T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming
The T-product for third-order tensors has been used extensively in the literature. In this paper, we first introduce first-order and second-order T-derivatives for the multi-variable real-valued function with the tensor T-product. Inspired by an equivalent characterization of a twice continuously T-...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2021, Vol.78 (1), p.239-272 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 1 |
container_start_page | 239 |
container_title | Computational optimization and applications |
container_volume | 78 |
creator | Zheng, Meng-Meng Huang, Zheng-Hai Wang, Yong |
description | The T-product for third-order tensors has been used extensively in the literature. In this paper, we first introduce first-order and second-order T-derivatives for the multi-variable real-valued function with the tensor T-product. Inspired by an equivalent characterization of a twice continuously T-differentiable multi-variable real-valued function being convex, we present a definition of the T-positive semidefiniteness of third-order symmetric tensors. After that, we extend many properties of positive semidefinite matrices to the case of third-order symmetric tensors. In particular, analogue to the widely used semidefinite programming (SDP for short), we introduce the semidefinite programming over the space of third-order symmetric tensors (T-semidefinite programming or TSDP for short), and provide a way to solve the TSDP problem by converting it into an SDP problem in the complex domain. Furthermore, we give several TSDP examples and especially some preliminary numerical results for two unconstrained polynomial optimization problems. Experiments show that finding the global minimums of polynomials via the TSDP relaxation outperforms the traditional SDP relaxation for the test examples. |
doi_str_mv | 10.1007/s10589-020-00231-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476734393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476734393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-553a6854cc05595eee8d71fd3ae4185616dad95a23f8889ae5a820150b699a543</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRue7TixR1TxJVViKRODZeKX4ookxS-l6r8nUCSYmN7w7rlXOoydS7iUANUVSTDWCVAgAJSWYnvAJtJUWijrikM2AadKUQLoY3ZCtAIAV2k1Yc8Lse4pDekDOWGbIjapSwN2SMT7hg-vKUfR54iZ065tccip5uOf-kw8dJEvxF-Or3O_zKFtU7c8ZUdNeCM8-7lT9nR7s5jdi_nj3cPsei5qLd0gjNGhtKaoazDGGUS0sZJN1AELaU0pyxiiM0HpxlrrAppgFUgDL6VzwRR6yi72veP2-wZp8Kt-k7tx0quiKitdaKfHlNqn6twTZWz8Oqc25J2X4L8k-r1EP0r03xL9doT0HqIx3C0x_1b_Q30CQKN2Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476734393</pqid></control><display><type>article</type><title>T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Zheng, Meng-Meng ; Huang, Zheng-Hai ; Wang, Yong</creator><creatorcontrib>Zheng, Meng-Meng ; Huang, Zheng-Hai ; Wang, Yong</creatorcontrib><description>The T-product for third-order tensors has been used extensively in the literature. In this paper, we first introduce first-order and second-order T-derivatives for the multi-variable real-valued function with the tensor T-product. Inspired by an equivalent characterization of a twice continuously T-differentiable multi-variable real-valued function being convex, we present a definition of the T-positive semidefiniteness of third-order symmetric tensors. After that, we extend many properties of positive semidefinite matrices to the case of third-order symmetric tensors. In particular, analogue to the widely used semidefinite programming (SDP for short), we introduce the semidefinite programming over the space of third-order symmetric tensors (T-semidefinite programming or TSDP for short), and provide a way to solve the TSDP problem by converting it into an SDP problem in the complex domain. Furthermore, we give several TSDP examples and especially some preliminary numerical results for two unconstrained polynomial optimization problems. Experiments show that finding the global minimums of polynomials via the TSDP relaxation outperforms the traditional SDP relaxation for the test examples.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-020-00231-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Convex and Discrete Geometry ; Management Science ; Mathematical analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Polynomials ; Semidefinite programming ; Statistics ; Tensors</subject><ispartof>Computational optimization and applications, 2021, Vol.78 (1), p.239-272</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-553a6854cc05595eee8d71fd3ae4185616dad95a23f8889ae5a820150b699a543</citedby><cites>FETCH-LOGICAL-c319t-553a6854cc05595eee8d71fd3ae4185616dad95a23f8889ae5a820150b699a543</cites><orcidid>0000-0003-2269-961X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-020-00231-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-020-00231-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zheng, Meng-Meng</creatorcontrib><creatorcontrib>Huang, Zheng-Hai</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>The T-product for third-order tensors has been used extensively in the literature. In this paper, we first introduce first-order and second-order T-derivatives for the multi-variable real-valued function with the tensor T-product. Inspired by an equivalent characterization of a twice continuously T-differentiable multi-variable real-valued function being convex, we present a definition of the T-positive semidefiniteness of third-order symmetric tensors. After that, we extend many properties of positive semidefinite matrices to the case of third-order symmetric tensors. In particular, analogue to the widely used semidefinite programming (SDP for short), we introduce the semidefinite programming over the space of third-order symmetric tensors (T-semidefinite programming or TSDP for short), and provide a way to solve the TSDP problem by converting it into an SDP problem in the complex domain. Furthermore, we give several TSDP examples and especially some preliminary numerical results for two unconstrained polynomial optimization problems. Experiments show that finding the global minimums of polynomials via the TSDP relaxation outperforms the traditional SDP relaxation for the test examples.</description><subject>Convex and Discrete Geometry</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Semidefinite programming</subject><subject>Statistics</subject><subject>Tensors</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRue7TixR1TxJVViKRODZeKX4ookxS-l6r8nUCSYmN7w7rlXOoydS7iUANUVSTDWCVAgAJSWYnvAJtJUWijrikM2AadKUQLoY3ZCtAIAV2k1Yc8Lse4pDekDOWGbIjapSwN2SMT7hg-vKUfR54iZ065tccip5uOf-kw8dJEvxF-Or3O_zKFtU7c8ZUdNeCM8-7lT9nR7s5jdi_nj3cPsei5qLd0gjNGhtKaoazDGGUS0sZJN1AELaU0pyxiiM0HpxlrrAppgFUgDL6VzwRR6yi72veP2-wZp8Kt-k7tx0quiKitdaKfHlNqn6twTZWz8Oqc25J2X4L8k-r1EP0r03xL9doT0HqIx3C0x_1b_Q30CQKN2Sg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zheng, Meng-Meng</creator><creator>Huang, Zheng-Hai</creator><creator>Wang, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2269-961X</orcidid></search><sort><creationdate>2021</creationdate><title>T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming</title><author>Zheng, Meng-Meng ; Huang, Zheng-Hai ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-553a6854cc05595eee8d71fd3ae4185616dad95a23f8889ae5a820150b699a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convex and Discrete Geometry</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Semidefinite programming</topic><topic>Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Meng-Meng</creatorcontrib><creatorcontrib>Huang, Zheng-Hai</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Meng-Meng</au><au>Huang, Zheng-Hai</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2021</date><risdate>2021</risdate><volume>78</volume><issue>1</issue><spage>239</spage><epage>272</epage><pages>239-272</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>The T-product for third-order tensors has been used extensively in the literature. In this paper, we first introduce first-order and second-order T-derivatives for the multi-variable real-valued function with the tensor T-product. Inspired by an equivalent characterization of a twice continuously T-differentiable multi-variable real-valued function being convex, we present a definition of the T-positive semidefiniteness of third-order symmetric tensors. After that, we extend many properties of positive semidefinite matrices to the case of third-order symmetric tensors. In particular, analogue to the widely used semidefinite programming (SDP for short), we introduce the semidefinite programming over the space of third-order symmetric tensors (T-semidefinite programming or TSDP for short), and provide a way to solve the TSDP problem by converting it into an SDP problem in the complex domain. Furthermore, we give several TSDP examples and especially some preliminary numerical results for two unconstrained polynomial optimization problems. Experiments show that finding the global minimums of polynomials via the TSDP relaxation outperforms the traditional SDP relaxation for the test examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-020-00231-w</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2269-961X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2021, Vol.78 (1), p.239-272 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2476734393 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Convex and Discrete Geometry Management Science Mathematical analysis Mathematical functions Mathematics Mathematics and Statistics Matrix methods Operations Research Operations Research/Decision Theory Optimization Polynomials Semidefinite programming Statistics Tensors |
title | T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T-positive%20semidefiniteness%20of%20third-order%20symmetric%20tensors%20and%20T-semidefinite%20programming&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Zheng,%20Meng-Meng&rft.date=2021&rft.volume=78&rft.issue=1&rft.spage=239&rft.epage=272&rft.pages=239-272&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-020-00231-w&rft_dat=%3Cproquest_cross%3E2476734393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476734393&rft_id=info:pmid/&rfr_iscdi=true |