Research on running state recognition method of hydro-turbine based on FOA-PNN

•HHT is used to analyze the effect of pressure fluctuation signal.•The mutual information theory is used to obtain the characteristic parameter.•PNN is applied to turbine fault monitoring for the first time.•FOA is used to optimize the PNN model. To effectively monitor the operating state of hydro-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2021-02, Vol.169, p.108498, Article 108498
Hauptverfasser: Lan, Chaofeng, Li, Shuijing, Chen, Huan, Zhang, Wu, Li, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108498
container_title Measurement : journal of the International Measurement Confederation
container_volume 169
creator Lan, Chaofeng
Li, Shuijing
Chen, Huan
Zhang, Wu
Li, Hui
description •HHT is used to analyze the effect of pressure fluctuation signal.•The mutual information theory is used to obtain the characteristic parameter.•PNN is applied to turbine fault monitoring for the first time.•FOA is used to optimize the PNN model. To effectively monitor the operating state of hydro-turbine, a diagnosis strategy based on the operating conditions and pressure pulsation of the turbine is proposed. The improved Hilbert-Huang Transform (HHT) method is used to study the characteristics of pressure pulsation under different operating conditions. The physical parameters of pressure pulsation are extracted through the mutual information theory. Procedures include optimizing the smoothing factor σ of the Probabilistic neural network (PNN) network through the Fruit fly optimization algorithm (FOA), constructing the FOA-PNN network model, classifying the unit operating status. The result shows that when σ = 0.23, the prediction accuracy of the FOA-PNN network is 100%, and the training time is 0.336372 s. It is proven that the FOA-PNN can predict the running state of the turbine in a short time and monitor the running malfunction in real time.
doi_str_mv 10.1016/j.measurement.2020.108498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476553842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120310265</els_id><sourcerecordid>2476553842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6078be472d44da7ec97db18e467d9cf8d4c0a4a8e235af5973968d63d890720e3</originalsourceid><addsrcrecordid>eNqNkNFLwzAQxoMoOKf_Q8XnzjRNm_RxDKfC2EQUfAtpct1SbDKTVNh_b0t98NGng7vv--7uh9BthhcZzsr7dtGBDL2HDmxcEEzGPqcVP0OzjLM8pRn5OEczTMo8JYRml-gqhBZjXOZVOUPbVwggvTokzia-t9bYfRKijJB4UG5vTTTDpIN4cDpxTXI4ae_S2PvaWEhqGUCP1vVumb5st9foopGfAW5-6xy9rx_eVk_pZvf4vFpuUpXTKqYlZrwGyoimVEsGqmK6zjjQkulKNVxThSWVHEheyKao2HAr12WueYUZwZDP0d2Ue_Tuq4cQRet6b4eVglBWFkXOKRlU1aRS3oXgoRFHbzrpTyLDYsQnWvEHnxjxiQnf4F1NXhje-DbgRVAGrAJtBjBRaGf-kfIDC3V-jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476553842</pqid></control><display><type>article</type><title>Research on running state recognition method of hydro-turbine based on FOA-PNN</title><source>Elsevier ScienceDirect Journals</source><creator>Lan, Chaofeng ; Li, Shuijing ; Chen, Huan ; Zhang, Wu ; Li, Hui</creator><creatorcontrib>Lan, Chaofeng ; Li, Shuijing ; Chen, Huan ; Zhang, Wu ; Li, Hui</creatorcontrib><description>•HHT is used to analyze the effect of pressure fluctuation signal.•The mutual information theory is used to obtain the characteristic parameter.•PNN is applied to turbine fault monitoring for the first time.•FOA is used to optimize the PNN model. To effectively monitor the operating state of hydro-turbine, a diagnosis strategy based on the operating conditions and pressure pulsation of the turbine is proposed. The improved Hilbert-Huang Transform (HHT) method is used to study the characteristics of pressure pulsation under different operating conditions. The physical parameters of pressure pulsation are extracted through the mutual information theory. Procedures include optimizing the smoothing factor σ of the Probabilistic neural network (PNN) network through the Fruit fly optimization algorithm (FOA), constructing the FOA-PNN network model, classifying the unit operating status. The result shows that when σ = 0.23, the prediction accuracy of the FOA-PNN network is 100%, and the training time is 0.336372 s. It is proven that the FOA-PNN can predict the running state of the turbine in a short time and monitor the running malfunction in real time.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.108498</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Fault diagnosis ; Fruit fly optimization algorithm ; Hilbert transformation ; Hydraulic turbines ; Hydro-turbine ; Information theory ; Neural networks ; Optimization ; Physical properties ; Pressure ; Pressure fluctuations ; Probabilistic neural network ; Pulsation ; Turbines</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-02, Vol.169, p.108498, Article 108498</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6078be472d44da7ec97db18e467d9cf8d4c0a4a8e235af5973968d63d890720e3</citedby><cites>FETCH-LOGICAL-c349t-6078be472d44da7ec97db18e467d9cf8d4c0a4a8e235af5973968d63d890720e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2020.108498$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Lan, Chaofeng</creatorcontrib><creatorcontrib>Li, Shuijing</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Zhang, Wu</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><title>Research on running state recognition method of hydro-turbine based on FOA-PNN</title><title>Measurement : journal of the International Measurement Confederation</title><description>•HHT is used to analyze the effect of pressure fluctuation signal.•The mutual information theory is used to obtain the characteristic parameter.•PNN is applied to turbine fault monitoring for the first time.•FOA is used to optimize the PNN model. To effectively monitor the operating state of hydro-turbine, a diagnosis strategy based on the operating conditions and pressure pulsation of the turbine is proposed. The improved Hilbert-Huang Transform (HHT) method is used to study the characteristics of pressure pulsation under different operating conditions. The physical parameters of pressure pulsation are extracted through the mutual information theory. Procedures include optimizing the smoothing factor σ of the Probabilistic neural network (PNN) network through the Fruit fly optimization algorithm (FOA), constructing the FOA-PNN network model, classifying the unit operating status. The result shows that when σ = 0.23, the prediction accuracy of the FOA-PNN network is 100%, and the training time is 0.336372 s. It is proven that the FOA-PNN can predict the running state of the turbine in a short time and monitor the running malfunction in real time.</description><subject>Algorithms</subject><subject>Fault diagnosis</subject><subject>Fruit fly optimization algorithm</subject><subject>Hilbert transformation</subject><subject>Hydraulic turbines</subject><subject>Hydro-turbine</subject><subject>Information theory</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical properties</subject><subject>Pressure</subject><subject>Pressure fluctuations</subject><subject>Probabilistic neural network</subject><subject>Pulsation</subject><subject>Turbines</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkNFLwzAQxoMoOKf_Q8XnzjRNm_RxDKfC2EQUfAtpct1SbDKTVNh_b0t98NGng7vv--7uh9BthhcZzsr7dtGBDL2HDmxcEEzGPqcVP0OzjLM8pRn5OEczTMo8JYRml-gqhBZjXOZVOUPbVwggvTokzia-t9bYfRKijJB4UG5vTTTDpIN4cDpxTXI4ae_S2PvaWEhqGUCP1vVumb5st9foopGfAW5-6xy9rx_eVk_pZvf4vFpuUpXTKqYlZrwGyoimVEsGqmK6zjjQkulKNVxThSWVHEheyKao2HAr12WueYUZwZDP0d2Ue_Tuq4cQRet6b4eVglBWFkXOKRlU1aRS3oXgoRFHbzrpTyLDYsQnWvEHnxjxiQnf4F1NXhje-DbgRVAGrAJtBjBRaGf-kfIDC3V-jQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Lan, Chaofeng</creator><creator>Li, Shuijing</creator><creator>Chen, Huan</creator><creator>Zhang, Wu</creator><creator>Li, Hui</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202102</creationdate><title>Research on running state recognition method of hydro-turbine based on FOA-PNN</title><author>Lan, Chaofeng ; Li, Shuijing ; Chen, Huan ; Zhang, Wu ; Li, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6078be472d44da7ec97db18e467d9cf8d4c0a4a8e235af5973968d63d890720e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Fault diagnosis</topic><topic>Fruit fly optimization algorithm</topic><topic>Hilbert transformation</topic><topic>Hydraulic turbines</topic><topic>Hydro-turbine</topic><topic>Information theory</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical properties</topic><topic>Pressure</topic><topic>Pressure fluctuations</topic><topic>Probabilistic neural network</topic><topic>Pulsation</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Chaofeng</creatorcontrib><creatorcontrib>Li, Shuijing</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Zhang, Wu</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Chaofeng</au><au>Li, Shuijing</au><au>Chen, Huan</au><au>Zhang, Wu</au><au>Li, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on running state recognition method of hydro-turbine based on FOA-PNN</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-02</date><risdate>2021</risdate><volume>169</volume><spage>108498</spage><pages>108498-</pages><artnum>108498</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•HHT is used to analyze the effect of pressure fluctuation signal.•The mutual information theory is used to obtain the characteristic parameter.•PNN is applied to turbine fault monitoring for the first time.•FOA is used to optimize the PNN model. To effectively monitor the operating state of hydro-turbine, a diagnosis strategy based on the operating conditions and pressure pulsation of the turbine is proposed. The improved Hilbert-Huang Transform (HHT) method is used to study the characteristics of pressure pulsation under different operating conditions. The physical parameters of pressure pulsation are extracted through the mutual information theory. Procedures include optimizing the smoothing factor σ of the Probabilistic neural network (PNN) network through the Fruit fly optimization algorithm (FOA), constructing the FOA-PNN network model, classifying the unit operating status. The result shows that when σ = 0.23, the prediction accuracy of the FOA-PNN network is 100%, and the training time is 0.336372 s. It is proven that the FOA-PNN can predict the running state of the turbine in a short time and monitor the running malfunction in real time.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.108498</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-02, Vol.169, p.108498, Article 108498
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2476553842
source Elsevier ScienceDirect Journals
subjects Algorithms
Fault diagnosis
Fruit fly optimization algorithm
Hilbert transformation
Hydraulic turbines
Hydro-turbine
Information theory
Neural networks
Optimization
Physical properties
Pressure
Pressure fluctuations
Probabilistic neural network
Pulsation
Turbines
title Research on running state recognition method of hydro-turbine based on FOA-PNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20running%20state%20recognition%20method%20of%20hydro-turbine%20based%20on%20FOA-PNN&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Lan,%20Chaofeng&rft.date=2021-02&rft.volume=169&rft.spage=108498&rft.pages=108498-&rft.artnum=108498&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.108498&rft_dat=%3Cproquest_cross%3E2476553842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476553842&rft_id=info:pmid/&rft_els_id=S0263224120310265&rfr_iscdi=true