A Data-Driven Surrogate Approach for the Temporal Stability Forecasting of Vegetation Covered Dikes

Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-01, Vol.13 (1), p.107
Hauptverfasser: Jamalinia, Elahe, Tehrani, Faraz S., Steele-Dunne, Susan C., Vardon, Philip J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 107
container_title Water (Basel)
container_volume 13
creator Jamalinia, Elahe
Tehrani, Faraz S.
Steele-Dunne, Susan C.
Vardon, Philip J.
description Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.
doi_str_mv 10.3390/w13010107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476393019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476393019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a789292db37555f526465031cce21a9975955647b654b15c6bac2d582ff186ff3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGoX_oOAKxejeWeyLK0vKLhodTtk0qRNbSdjklb6741UxHsX9ywO51w-AK4xuqNUofsvTBEuK8_AgCBJK8YYPv-nL8EopQ0qw1RdczQAZgynOutqGv3BdnC-jzGsdLZw3PcxaLOGLkSY1xYu7K4PUW_hPOvWb30-wscQrdEp-24Fg4PvdmWzzj50cBIONtolnPoPm67AhdPbZEe_dwjeHh8Wk-dq9vr0MhnPKkMUyZWWtSpi2VLJOXecCCY4otgYS7BWSnLFuWCyFZy1mBvRakOWvCbO4Vo4R4fg5pRbPv_c25SbTdjHrlQ2hElBVaGjiuv25DIxpBSta_rodzoeG4yaH4zNH0b6DS0NYxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476393019</pqid></control><display><type>article</type><title>A Data-Driven Surrogate Approach for the Temporal Stability Forecasting of Vegetation Covered Dikes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Jamalinia, Elahe ; Tehrani, Faraz S. ; Steele-Dunne, Susan C. ; Vardon, Philip J.</creator><creatorcontrib>Jamalinia, Elahe ; Tehrani, Faraz S. ; Steele-Dunne, Susan C. ; Vardon, Philip J.</creatorcontrib><description>Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w13010107</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Climatic conditions ; Datasets ; Dikes ; Failure ; Landslides &amp; mudslides ; Mathematical models ; Numerical analysis ; Numerical models ; Physics ; Shear strength ; Simulation ; Stability ; Vegetation ; Vegetation cover</subject><ispartof>Water (Basel), 2021-01, Vol.13 (1), p.107</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a789292db37555f526465031cce21a9975955647b654b15c6bac2d582ff186ff3</citedby><cites>FETCH-LOGICAL-c292t-a789292db37555f526465031cce21a9975955647b654b15c6bac2d582ff186ff3</cites><orcidid>0000-0002-8644-3077 ; 0000-0001-5614-6592 ; 0000-0002-1874-2315 ; 0000-0002-3962-4879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jamalinia, Elahe</creatorcontrib><creatorcontrib>Tehrani, Faraz S.</creatorcontrib><creatorcontrib>Steele-Dunne, Susan C.</creatorcontrib><creatorcontrib>Vardon, Philip J.</creatorcontrib><title>A Data-Driven Surrogate Approach for the Temporal Stability Forecasting of Vegetation Covered Dikes</title><title>Water (Basel)</title><description>Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Climatic conditions</subject><subject>Datasets</subject><subject>Dikes</subject><subject>Failure</subject><subject>Landslides &amp; mudslides</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Shear strength</subject><subject>Simulation</subject><subject>Stability</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEtLAzEUhYMoWGoX_oOAKxejeWeyLK0vKLhodTtk0qRNbSdjklb6741UxHsX9ywO51w-AK4xuqNUofsvTBEuK8_AgCBJK8YYPv-nL8EopQ0qw1RdczQAZgynOutqGv3BdnC-jzGsdLZw3PcxaLOGLkSY1xYu7K4PUW_hPOvWb30-wscQrdEp-24Fg4PvdmWzzj50cBIONtolnPoPm67AhdPbZEe_dwjeHh8Wk-dq9vr0MhnPKkMUyZWWtSpi2VLJOXecCCY4otgYS7BWSnLFuWCyFZy1mBvRakOWvCbO4Vo4R4fg5pRbPv_c25SbTdjHrlQ2hElBVaGjiuv25DIxpBSta_rodzoeG4yaH4zNH0b6DS0NYxU</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jamalinia, Elahe</creator><creator>Tehrani, Faraz S.</creator><creator>Steele-Dunne, Susan C.</creator><creator>Vardon, Philip J.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8644-3077</orcidid><orcidid>https://orcid.org/0000-0001-5614-6592</orcidid><orcidid>https://orcid.org/0000-0002-1874-2315</orcidid><orcidid>https://orcid.org/0000-0002-3962-4879</orcidid></search><sort><creationdate>20210101</creationdate><title>A Data-Driven Surrogate Approach for the Temporal Stability Forecasting of Vegetation Covered Dikes</title><author>Jamalinia, Elahe ; Tehrani, Faraz S. ; Steele-Dunne, Susan C. ; Vardon, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a789292db37555f526465031cce21a9975955647b654b15c6bac2d582ff186ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Climatic conditions</topic><topic>Datasets</topic><topic>Dikes</topic><topic>Failure</topic><topic>Landslides &amp; mudslides</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Shear strength</topic><topic>Simulation</topic><topic>Stability</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamalinia, Elahe</creatorcontrib><creatorcontrib>Tehrani, Faraz S.</creatorcontrib><creatorcontrib>Steele-Dunne, Susan C.</creatorcontrib><creatorcontrib>Vardon, Philip J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamalinia, Elahe</au><au>Tehrani, Faraz S.</au><au>Steele-Dunne, Susan C.</au><au>Vardon, Philip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Surrogate Approach for the Temporal Stability Forecasting of Vegetation Covered Dikes</atitle><jtitle>Water (Basel)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>107</spage><pages>107-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w13010107</doi><orcidid>https://orcid.org/0000-0002-8644-3077</orcidid><orcidid>https://orcid.org/0000-0001-5614-6592</orcidid><orcidid>https://orcid.org/0000-0002-1874-2315</orcidid><orcidid>https://orcid.org/0000-0002-3962-4879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2021-01, Vol.13 (1), p.107
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2476393019
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Algorithms
Climatic conditions
Datasets
Dikes
Failure
Landslides & mudslides
Mathematical models
Numerical analysis
Numerical models
Physics
Shear strength
Simulation
Stability
Vegetation
Vegetation cover
title A Data-Driven Surrogate Approach for the Temporal Stability Forecasting of Vegetation Covered Dikes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Surrogate%20Approach%20for%20the%20Temporal%20Stability%20Forecasting%20of%20Vegetation%20Covered%20Dikes&rft.jtitle=Water%20(Basel)&rft.au=Jamalinia,%20Elahe&rft.date=2021-01-01&rft.volume=13&rft.issue=1&rft.spage=107&rft.pages=107-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w13010107&rft_dat=%3Cproquest_cross%3E2476393019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476393019&rft_id=info:pmid/&rfr_iscdi=true