Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures
Manuel brain glioblastomas tumor exploration through MRI modalities is time-consuming. It is considered as a harmful and critical task due to highly inhomogeneous tumor regions composition. For this reason, clinicians recommend the Computer-Aided Diagnosis (CAD) tools to ensure a more accurate diagn...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021, Vol.80 (1), p.899-919 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 919 |
---|---|
container_issue | 1 |
container_start_page | 899 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Mzoughi, Hiba Njeh, Ines Slima, Mohamed Ben Ben Hamida, Ahmed Mhiri, Chokri Mahfoudh, Kheireddine Ben |
description | Manuel brain glioblastomas tumor exploration through MRI modalities is time-consuming. It is considered as a harmful and critical task due to highly inhomogeneous tumor regions composition. For this reason, clinicians recommend the Computer-Aided Diagnosis (CAD) tools to ensure a more accurate diagnostic. Based on convolutional Deep-Learning algorithms, this paper investigates a fully automatic CAD for brain Glioblastomas tumors exploration including three steps: pre-processing, segmentation, and finally classification. A denoising and an automatic contrast enhancement method have been applied to preprocess the MRI scans. A Multi-Modal Cascaded U-net architecture, based on Fully Convolutional deep Network (FCN), has been adopted for the Region of Interest (ROI) extraction and finally, Deep Convolutional Neural Network (D-CNN) architecture has been used to classify brain glioblastomas tumor into High-Grade (HG) and Low-Grade (LG). Experiments were performed on the Multimodal Brain Tumor Segmentation Challenge BraTS-2018 datasets benchmark. Several validations metric have been adopted to assess the CAD’s performances. The Dice Metric (DM) parameter has been calculated between the obtained segmentation results and the available ground truth data. The accuracy parameter has been computed for classification performance evaluation. The higher DM and accuracy values could attest the performance and the efficiency of the proposed CAD tool. |
doi_str_mv | 10.1007/s11042-020-09786-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476372119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476372119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-14075e04b7f187f2dc42fecc567c33b4160b45731b954a6b9fc1b7388db46b463</originalsourceid><addsrcrecordid>eNp9kd9KwzAUxosoOKcv4FXAG3cRTZo06S5H_TeYE2RehyRNZ2fX1CR1-i4-rJkbeCccOB-c7_wSzpck5xhdYYT4tccY0RSiFEE05jmD7CAZ4IwTyHmKD6MmOYI8Q_g4OfF-hRBmWUoHyffCbqQrPZBA23XXB-OArEtTgrKWy9b62oPLYnIzApV1QDlZt-DxeQqWTW1VI32wa-lB6Ndxaj67xjoZatsCJX1kRCFBaUwX4e2HbfrtTDagNb3bi7Cx7i2-cQOL-XwEpNOvdTA69M740-Soko03Z_s-TF7ubhfFA5w93U-LyQxqwkiAmCKeGUQVr3DOq7TUNK2M1hnjmhBFMUOKxltgNc6oZGpcaaw4yfNSURaLDJOLHbdz9r03PoiV7V38nxcp5YzEE-JxdKU7l3bWe2cq0bl6Ld2XwEhsUxC7FERMQfymILZoslvy0dwujftD_7P1A7opi9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476372119</pqid></control><display><type>article</type><title>Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures</title><source>SpringerLink Journals</source><creator>Mzoughi, Hiba ; Njeh, Ines ; Slima, Mohamed Ben ; Ben Hamida, Ahmed ; Mhiri, Chokri ; Mahfoudh, Kheireddine Ben</creator><creatorcontrib>Mzoughi, Hiba ; Njeh, Ines ; Slima, Mohamed Ben ; Ben Hamida, Ahmed ; Mhiri, Chokri ; Mahfoudh, Kheireddine Ben</creatorcontrib><description>Manuel brain glioblastomas tumor exploration through MRI modalities is time-consuming. It is considered as a harmful and critical task due to highly inhomogeneous tumor regions composition. For this reason, clinicians recommend the Computer-Aided Diagnosis (CAD) tools to ensure a more accurate diagnostic. Based on convolutional Deep-Learning algorithms, this paper investigates a fully automatic CAD for brain Glioblastomas tumors exploration including three steps: pre-processing, segmentation, and finally classification. A denoising and an automatic contrast enhancement method have been applied to preprocess the MRI scans. A Multi-Modal Cascaded U-net architecture, based on Fully Convolutional deep Network (FCN), has been adopted for the Region of Interest (ROI) extraction and finally, Deep Convolutional Neural Network (D-CNN) architecture has been used to classify brain glioblastomas tumor into High-Grade (HG) and Low-Grade (LG). Experiments were performed on the Multimodal Brain Tumor Segmentation Challenge BraTS-2018 datasets benchmark. Several validations metric have been adopted to assess the CAD’s performances. The Dice Metric (DM) parameter has been calculated between the obtained segmentation results and the available ground truth data. The accuracy parameter has been computed for classification performance evaluation. The higher DM and accuracy values could attest the performance and the efficiency of the proposed CAD tool.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09786-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Brain ; Brain cancer ; Classification ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Diagnosis ; Diagnostic software ; Diagnostic systems ; Exploration ; Glioma ; Ground truth ; Machine learning ; Magnetic resonance imaging ; Medical research ; Multimedia ; Multimedia Information Systems ; Neural networks ; Noise ; Noise reduction ; Parameters ; Performance evaluation ; Segmentation ; Special Purpose and Application-Based Systems ; Support vector machines ; Tumors</subject><ispartof>Multimedia tools and applications, 2021, Vol.80 (1), p.899-919</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-14075e04b7f187f2dc42fecc567c33b4160b45731b954a6b9fc1b7388db46b463</citedby><cites>FETCH-LOGICAL-c363t-14075e04b7f187f2dc42fecc567c33b4160b45731b954a6b9fc1b7388db46b463</cites><orcidid>0000-0002-2664-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09786-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09786-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mzoughi, Hiba</creatorcontrib><creatorcontrib>Njeh, Ines</creatorcontrib><creatorcontrib>Slima, Mohamed Ben</creatorcontrib><creatorcontrib>Ben Hamida, Ahmed</creatorcontrib><creatorcontrib>Mhiri, Chokri</creatorcontrib><creatorcontrib>Mahfoudh, Kheireddine Ben</creatorcontrib><title>Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Manuel brain glioblastomas tumor exploration through MRI modalities is time-consuming. It is considered as a harmful and critical task due to highly inhomogeneous tumor regions composition. For this reason, clinicians recommend the Computer-Aided Diagnosis (CAD) tools to ensure a more accurate diagnostic. Based on convolutional Deep-Learning algorithms, this paper investigates a fully automatic CAD for brain Glioblastomas tumors exploration including three steps: pre-processing, segmentation, and finally classification. A denoising and an automatic contrast enhancement method have been applied to preprocess the MRI scans. A Multi-Modal Cascaded U-net architecture, based on Fully Convolutional deep Network (FCN), has been adopted for the Region of Interest (ROI) extraction and finally, Deep Convolutional Neural Network (D-CNN) architecture has been used to classify brain glioblastomas tumor into High-Grade (HG) and Low-Grade (LG). Experiments were performed on the Multimodal Brain Tumor Segmentation Challenge BraTS-2018 datasets benchmark. Several validations metric have been adopted to assess the CAD’s performances. The Dice Metric (DM) parameter has been calculated between the obtained segmentation results and the available ground truth data. The accuracy parameter has been computed for classification performance evaluation. The higher DM and accuracy values could attest the performance and the efficiency of the proposed CAD tool.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Diagnosis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Exploration</subject><subject>Glioma</subject><subject>Ground truth</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical research</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Segmentation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Support vector machines</subject><subject>Tumors</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kd9KwzAUxosoOKcv4FXAG3cRTZo06S5H_TeYE2RehyRNZ2fX1CR1-i4-rJkbeCccOB-c7_wSzpck5xhdYYT4tccY0RSiFEE05jmD7CAZ4IwTyHmKD6MmOYI8Q_g4OfF-hRBmWUoHyffCbqQrPZBA23XXB-OArEtTgrKWy9b62oPLYnIzApV1QDlZt-DxeQqWTW1VI32wa-lB6Ndxaj67xjoZatsCJX1kRCFBaUwX4e2HbfrtTDagNb3bi7Cx7i2-cQOL-XwEpNOvdTA69M740-Soko03Z_s-TF7ubhfFA5w93U-LyQxqwkiAmCKeGUQVr3DOq7TUNK2M1hnjmhBFMUOKxltgNc6oZGpcaaw4yfNSURaLDJOLHbdz9r03PoiV7V38nxcp5YzEE-JxdKU7l3bWe2cq0bl6Ld2XwEhsUxC7FERMQfymILZoslvy0dwujftD_7P1A7opi9Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mzoughi, Hiba</creator><creator>Njeh, Ines</creator><creator>Slima, Mohamed Ben</creator><creator>Ben Hamida, Ahmed</creator><creator>Mhiri, Chokri</creator><creator>Mahfoudh, Kheireddine Ben</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2664-9962</orcidid></search><sort><creationdate>2021</creationdate><title>Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures</title><author>Mzoughi, Hiba ; Njeh, Ines ; Slima, Mohamed Ben ; Ben Hamida, Ahmed ; Mhiri, Chokri ; Mahfoudh, Kheireddine Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-14075e04b7f187f2dc42fecc567c33b4160b45731b954a6b9fc1b7388db46b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Diagnosis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Exploration</topic><topic>Glioma</topic><topic>Ground truth</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical research</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Segmentation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Support vector machines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mzoughi, Hiba</creatorcontrib><creatorcontrib>Njeh, Ines</creatorcontrib><creatorcontrib>Slima, Mohamed Ben</creatorcontrib><creatorcontrib>Ben Hamida, Ahmed</creatorcontrib><creatorcontrib>Mhiri, Chokri</creatorcontrib><creatorcontrib>Mahfoudh, Kheireddine Ben</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mzoughi, Hiba</au><au>Njeh, Ines</au><au>Slima, Mohamed Ben</au><au>Ben Hamida, Ahmed</au><au>Mhiri, Chokri</au><au>Mahfoudh, Kheireddine Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021</date><risdate>2021</risdate><volume>80</volume><issue>1</issue><spage>899</spage><epage>919</epage><pages>899-919</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Manuel brain glioblastomas tumor exploration through MRI modalities is time-consuming. It is considered as a harmful and critical task due to highly inhomogeneous tumor regions composition. For this reason, clinicians recommend the Computer-Aided Diagnosis (CAD) tools to ensure a more accurate diagnostic. Based on convolutional Deep-Learning algorithms, this paper investigates a fully automatic CAD for brain Glioblastomas tumors exploration including three steps: pre-processing, segmentation, and finally classification. A denoising and an automatic contrast enhancement method have been applied to preprocess the MRI scans. A Multi-Modal Cascaded U-net architecture, based on Fully Convolutional deep Network (FCN), has been adopted for the Region of Interest (ROI) extraction and finally, Deep Convolutional Neural Network (D-CNN) architecture has been used to classify brain glioblastomas tumor into High-Grade (HG) and Low-Grade (LG). Experiments were performed on the Multimodal Brain Tumor Segmentation Challenge BraTS-2018 datasets benchmark. Several validations metric have been adopted to assess the CAD’s performances. The Dice Metric (DM) parameter has been calculated between the obtained segmentation results and the available ground truth data. The accuracy parameter has been computed for classification performance evaluation. The higher DM and accuracy values could attest the performance and the efficiency of the proposed CAD tool.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09786-6</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2664-9962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021, Vol.80 (1), p.899-919 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2476372119 |
source | SpringerLink Journals |
subjects | Accuracy Algorithms Artificial neural networks Brain Brain cancer Classification Computer Communication Networks Computer Science Data Structures and Information Theory Diagnosis Diagnostic software Diagnostic systems Exploration Glioma Ground truth Machine learning Magnetic resonance imaging Medical research Multimedia Multimedia Information Systems Neural networks Noise Noise reduction Parameters Performance evaluation Segmentation Special Purpose and Application-Based Systems Support vector machines Tumors |
title | Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20computer%20aided%20diagnosis%20(CAD)%20for%20brain%20MRI%20glioblastomas%20tumor%20exploration%20based%20on%20a%20deep%20convolutional%20neuronal%20networks%20(D-CNN)%20architectures&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Mzoughi,%20Hiba&rft.date=2021&rft.volume=80&rft.issue=1&rft.spage=899&rft.epage=919&rft.pages=899-919&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09786-6&rft_dat=%3Cproquest_cross%3E2476372119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476372119&rft_id=info:pmid/&rfr_iscdi=true |