Planar graphs without short even cycles are near-bipartite

A graph is near-bipartite if its vertex set can be partitioned into an independent set and a set that induces a forest. It is clear that near-bipartite graphs are 3-colorable. In this note, we show that planar graphs without cycles of lengths in {4,6,8} are near-bipartite.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-09, Vol.284, p.626-630
Hauptverfasser: Liu, Runrun, Yu, Gexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 630
container_issue
container_start_page 626
container_title Discrete Applied Mathematics
container_volume 284
creator Liu, Runrun
Yu, Gexin
description A graph is near-bipartite if its vertex set can be partitioned into an independent set and a set that induces a forest. It is clear that near-bipartite graphs are 3-colorable. In this note, we show that planar graphs without cycles of lengths in {4,6,8} are near-bipartite.
doi_str_mv 10.1016/j.dam.2020.04.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476338540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20301888</els_id><sourcerecordid>2476338540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ed08bf80a9acdc269dc97d719253fea72a17567c209f7b44534a7bb6c7c68fd53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz62TtE1aPcniFyzoQcFbSJOpm7Lb1iSr7L83y3r2NAy8zzvDQ8glg5wBE9d9bvUm58AhhzIHJo_IjNWSZ0JKdkxmKSMyzuqPU3IWQg8ALG0zcvO61oP29NPraRXoj4urcRtpWI0-UvzGgZqdWWOg2iMdUPusdZP20UU8JyedXge8-Jtz8v5w_7Z4ypYvj8-Lu2VmCl7FDC3UbVeDbrSxhovGmkZayRpeFR1qyTWTlZCGQ9PJtiyrotSybYWRRtSdrYo5uTr0Tn782mKIqh-3fkgnFS-lKIq6KiGl2CFl_BiCx05N3m203ykGaq9I9SopUntFCkqVFCXm9sBgev_boVfBOBwMWufRRGVH9w_9CzsHbjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476338540</pqid></control><display><type>article</type><title>Planar graphs without short even cycles are near-bipartite</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Runrun ; Yu, Gexin</creator><creatorcontrib>Liu, Runrun ; Yu, Gexin</creatorcontrib><description>A graph is near-bipartite if its vertex set can be partitioned into an independent set and a set that induces a forest. It is clear that near-bipartite graphs are 3-colorable. In this note, we show that planar graphs without cycles of lengths in {4,6,8} are near-bipartite.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.04.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3-colorable ; Graph theory ; Graphs ; Near-bipartite ; Planar graphs ; Vertex sets</subject><ispartof>Discrete Applied Mathematics, 2020-09, Vol.284, p.626-630</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 30, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ed08bf80a9acdc269dc97d719253fea72a17567c209f7b44534a7bb6c7c68fd53</citedby><cites>FETCH-LOGICAL-c325t-ed08bf80a9acdc269dc97d719253fea72a17567c209f7b44534a7bb6c7c68fd53</cites><orcidid>0000-0001-5898-7344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X20301888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Runrun</creatorcontrib><creatorcontrib>Yu, Gexin</creatorcontrib><title>Planar graphs without short even cycles are near-bipartite</title><title>Discrete Applied Mathematics</title><description>A graph is near-bipartite if its vertex set can be partitioned into an independent set and a set that induces a forest. It is clear that near-bipartite graphs are 3-colorable. In this note, we show that planar graphs without cycles of lengths in {4,6,8} are near-bipartite.</description><subject>3-colorable</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Near-bipartite</subject><subject>Planar graphs</subject><subject>Vertex sets</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz62TtE1aPcniFyzoQcFbSJOpm7Lb1iSr7L83y3r2NAy8zzvDQ8glg5wBE9d9bvUm58AhhzIHJo_IjNWSZ0JKdkxmKSMyzuqPU3IWQg8ALG0zcvO61oP29NPraRXoj4urcRtpWI0-UvzGgZqdWWOg2iMdUPusdZP20UU8JyedXge8-Jtz8v5w_7Z4ypYvj8-Lu2VmCl7FDC3UbVeDbrSxhovGmkZayRpeFR1qyTWTlZCGQ9PJtiyrotSybYWRRtSdrYo5uTr0Tn782mKIqh-3fkgnFS-lKIq6KiGl2CFl_BiCx05N3m203ykGaq9I9SopUntFCkqVFCXm9sBgev_boVfBOBwMWufRRGVH9w_9CzsHbjM</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Liu, Runrun</creator><creator>Yu, Gexin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5898-7344</orcidid></search><sort><creationdate>20200930</creationdate><title>Planar graphs without short even cycles are near-bipartite</title><author>Liu, Runrun ; Yu, Gexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ed08bf80a9acdc269dc97d719253fea72a17567c209f7b44534a7bb6c7c68fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-colorable</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Near-bipartite</topic><topic>Planar graphs</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Runrun</creatorcontrib><creatorcontrib>Yu, Gexin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Runrun</au><au>Yu, Gexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar graphs without short even cycles are near-bipartite</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-09-30</date><risdate>2020</risdate><volume>284</volume><spage>626</spage><epage>630</epage><pages>626-630</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A graph is near-bipartite if its vertex set can be partitioned into an independent set and a set that induces a forest. It is clear that near-bipartite graphs are 3-colorable. In this note, we show that planar graphs without cycles of lengths in {4,6,8} are near-bipartite.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.04.017</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5898-7344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-09, Vol.284, p.626-630
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2476338540
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3-colorable
Graph theory
Graphs
Near-bipartite
Planar graphs
Vertex sets
title Planar graphs without short even cycles are near-bipartite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20graphs%20without%20short%20even%20cycles%20are%20near-bipartite&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Liu,%20Runrun&rft.date=2020-09-30&rft.volume=284&rft.spage=626&rft.epage=630&rft.pages=626-630&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.04.017&rft_dat=%3Cproquest_cross%3E2476338540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476338540&rft_id=info:pmid/&rft_els_id=S0166218X20301888&rfr_iscdi=true