Constructive characterizations concerning weak Roman domination in trees

Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively. It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-09, Vol.284, p.384-390
Hauptverfasser: Cabrera-Martínez, Abel, Yero, Ismael G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue
container_start_page 384
container_title Discrete Applied Mathematics
container_volume 284
creator Cabrera-Martínez, Abel
Yero, Ismael G.
description Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively. It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection with this, constructive characterizations of the trees T that satisfy the equalities above that are related with the weak Roman domination number are given in this work. That is, the trees T for which γr(T)=γ{R2}(T), γr(T)=γr2(T) and γr(T)=γR(T) are described.
doi_str_mv 10.1016/j.dam.2020.03.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476337794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20301578</els_id><sourcerecordid>2476337794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c4ab10386d3197b1b8aba58aba0f32b4581307abc15ee012df32445f01fbe4d53</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEP4FaJc4vdtE0nTmjiS5qEhEDiFqWpCyksGUk2BL-ejHHmYsv2e_bzY-wUoUDA5nwserUsSiihAF5A3e6xCbaizBshcJ9NEqbJS2yfD9lRCCMAYKom7HbubIh-raPZUKZflVc6kjffKpo0ybSzmrw19iX7JPWWPbilslnvlsb-IjJjs-iJwjE7GNR7oJO_PGVP11eP89t8cX9zN79c5JqXdcx1pToE3jY9x5nosGtVp-ptgIGXXVW3yEGoTmNNlDT2qVtV9QA4dFT1NZ-ys93elXcfawpRjm7tbTopy0o0nAsxqxIKdyjtXQieBrnyZqn8l0SQW8PkKJNhcmuYBC6TYYlzseNQkr8x5GXQhtL7vfGko-yd-Yf9A0fUdAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476337794</pqid></control><display><type>article</type><title>Constructive characterizations concerning weak Roman domination in trees</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cabrera-Martínez, Abel ; Yero, Ismael G.</creator><creatorcontrib>Cabrera-Martínez, Abel ; Yero, Ismael G.</creatorcontrib><description>Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively. It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection with this, constructive characterizations of the trees T that satisfy the equalities above that are related with the weak Roman domination number are given in this work. That is, the trees T for which γr(T)=γ{R2}(T), γr(T)=γr2(T) and γr(T)=γR(T) are described.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.03.058</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>2-rainbow domination ; Roman [formula omitted]-domination ; Roman domination ; Tree ; Trees ; Weak Roman domination</subject><ispartof>Discrete Applied Mathematics, 2020-09, Vol.284, p.384-390</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 30, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c4ab10386d3197b1b8aba58aba0f32b4581307abc15ee012df32445f01fbe4d53</citedby><cites>FETCH-LOGICAL-c325t-c4ab10386d3197b1b8aba58aba0f32b4581307abc15ee012df32445f01fbe4d53</cites><orcidid>0000-0003-2806-4842 ; 0000-0002-1619-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2020.03.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cabrera-Martínez, Abel</creatorcontrib><creatorcontrib>Yero, Ismael G.</creatorcontrib><title>Constructive characterizations concerning weak Roman domination in trees</title><title>Discrete Applied Mathematics</title><description>Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively. It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection with this, constructive characterizations of the trees T that satisfy the equalities above that are related with the weak Roman domination number are given in this work. That is, the trees T for which γr(T)=γ{R2}(T), γr(T)=γr2(T) and γr(T)=γR(T) are described.</description><subject>2-rainbow domination</subject><subject>Roman [formula omitted]-domination</subject><subject>Roman domination</subject><subject>Tree</subject><subject>Trees</subject><subject>Weak Roman domination</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEP4FaJc4vdtE0nTmjiS5qEhEDiFqWpCyksGUk2BL-ejHHmYsv2e_bzY-wUoUDA5nwserUsSiihAF5A3e6xCbaizBshcJ9NEqbJS2yfD9lRCCMAYKom7HbubIh-raPZUKZflVc6kjffKpo0ybSzmrw19iX7JPWWPbilslnvlsb-IjJjs-iJwjE7GNR7oJO_PGVP11eP89t8cX9zN79c5JqXdcx1pToE3jY9x5nosGtVp-ptgIGXXVW3yEGoTmNNlDT2qVtV9QA4dFT1NZ-ys93elXcfawpRjm7tbTopy0o0nAsxqxIKdyjtXQieBrnyZqn8l0SQW8PkKJNhcmuYBC6TYYlzseNQkr8x5GXQhtL7vfGko-yd-Yf9A0fUdAk</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Cabrera-Martínez, Abel</creator><creator>Yero, Ismael G.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2806-4842</orcidid><orcidid>https://orcid.org/0000-0002-1619-1572</orcidid></search><sort><creationdate>20200930</creationdate><title>Constructive characterizations concerning weak Roman domination in trees</title><author>Cabrera-Martínez, Abel ; Yero, Ismael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c4ab10386d3197b1b8aba58aba0f32b4581307abc15ee012df32445f01fbe4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-rainbow domination</topic><topic>Roman [formula omitted]-domination</topic><topic>Roman domination</topic><topic>Tree</topic><topic>Trees</topic><topic>Weak Roman domination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera-Martínez, Abel</creatorcontrib><creatorcontrib>Yero, Ismael G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera-Martínez, Abel</au><au>Yero, Ismael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructive characterizations concerning weak Roman domination in trees</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-09-30</date><risdate>2020</risdate><volume>284</volume><spage>384</spage><epage>390</epage><pages>384-390</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively. It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection with this, constructive characterizations of the trees T that satisfy the equalities above that are related with the weak Roman domination number are given in this work. That is, the trees T for which γr(T)=γ{R2}(T), γr(T)=γr2(T) and γr(T)=γR(T) are described.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.03.058</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2806-4842</orcidid><orcidid>https://orcid.org/0000-0002-1619-1572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-09, Vol.284, p.384-390
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2476337794
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects 2-rainbow domination
Roman [formula omitted]-domination
Roman domination
Tree
Trees
Weak Roman domination
title Constructive characterizations concerning weak Roman domination in trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructive%20characterizations%20concerning%20weak%20Roman%20domination%20in%20trees&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Cabrera-Mart%C3%ADnez,%20Abel&rft.date=2020-09-30&rft.volume=284&rft.spage=384&rft.epage=390&rft.pages=384-390&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.03.058&rft_dat=%3Cproquest_cross%3E2476337794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476337794&rft_id=info:pmid/&rft_els_id=S0166218X20301578&rfr_iscdi=true