Constructive characterizations concerning weak Roman domination in trees
Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively. It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection w...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-09, Vol.284, p.384-390 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a graph G, we consider γr(G), γ{R2}(G), γr2(G) and γR(G) as the weak Roman domination number, the Roman {2}-domination number, the 2-rainbow domination number and the Roman domination number of G, respectively.
It is known that γr(G)≤γ{R2}(G)≤γr2(G)≤γR(G) holds for any graph G. In connection with this, constructive characterizations of the trees T that satisfy the equalities above that are related with the weak Roman domination number are given in this work. That is, the trees T for which γr(T)=γ{R2}(T), γr(T)=γr2(T) and γr(T)=γR(T) are described. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2020.03.058 |