Spread spectrum SERS allows label-free detection of attomolar neurotransmitters

The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-01, Vol.12 (1), p.159-10, Article 159
Hauptverfasser: Lee, Wonkyoung, Kang, Byoung-Hoon, Yang, Hyunwoo, Park, Moonseong, Kwak, Ji Hyun, Chung, Taerin, Jeong, Yong, Kim, Bong Kyu, Jeong, Ki-Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 159
container_title Nature communications
container_volume 12
creator Lee, Wonkyoung
Kang, Byoung-Hoon
Yang, Hyunwoo
Park, Moonseong
Kwak, Ji Hyun
Chung, Taerin
Jeong, Yong
Kim, Bong Kyu
Jeong, Ki-Hun
description The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications. Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.
doi_str_mv 10.1038/s41467-020-20413-8
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2476252597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e81ac637ae604930b2de02aaa76fa2f8</doaj_id><sourcerecordid>2476252597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EolXpF-gBReIcanscO7kgoapApUqVWHq2Jsl4ySqJF9uh4tvjbdrSXvDFf-b5N_P0GDsT_KPgUJ9HJZQ2JZe8lFwJKOtX7PhwKoWR8PrZ-YidxrjjeUEjaqXesiMAJfO1OmY3m30g7Iu4py6FZSo2l983BY6jv4vFiC2NpQtERU8pCwY_F94VmJKf_IihmGkJPgWc4zSkRCG-Y28cjpFOH_YTdvvl8sfFt_L65uvVxefrsqsUT2ULBIJMo4g06BZrJ9BoSZ1G4K3hAEJTD11vXJstQNU403OhW14rg1jDCbtaub3Hnd2HYcLwx3oc7P2DD1uLIQ3dSJZqgZ0Gg6S5ajJe9sQlYm7oULoD69PK2i_tRH1Hc3Y0voC-rMzDT7v1v63JBlRdZcCHB0DwvxaKye78Eubs30qVbVWyakxWyVXVBR9jIPfUQXB7yNSumdqcqb3P1B5me_98tqcvjwlmAayCmEvzlsK_3v_B_gXLrq18</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476252597</pqid></control><display><type>article</type><title>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</title><source>SpringerOpen</source><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lee, Wonkyoung ; Kang, Byoung-Hoon ; Yang, Hyunwoo ; Park, Moonseong ; Kwak, Ji Hyun ; Chung, Taerin ; Jeong, Yong ; Kim, Bong Kyu ; Jeong, Ki-Hun</creator><creatorcontrib>Lee, Wonkyoung ; Kang, Byoung-Hoon ; Yang, Hyunwoo ; Park, Moonseong ; Kwak, Ji Hyun ; Chung, Taerin ; Jeong, Yong ; Kim, Bong Kyu ; Jeong, Ki-Hun</creatorcontrib><description>The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications. Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-20413-8</identifier><identifier>PMID: 33420035</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/624/1107/527/1821 ; 639/624/1111/55 ; Acetylcholine ; Biosensing Techniques - methods ; Biosensors ; Correlation analysis ; Dopamine ; Feasibility Studies ; Gold - chemistry ; Humanities and Social Sciences ; Metal Nanoparticles - chemistry ; multidisciplinary ; Neurological diseases ; Neurotransmitter Agents - analysis ; Neurotransmitters ; Noise ; Raman spectroscopy ; Science ; Science (multidisciplinary) ; Serotonin ; Signal to noise ratio ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Spread spectrum ; Temporal resolution ; γ-Aminobutyric acid</subject><ispartof>Nature communications, 2021-01, Vol.12 (1), p.159-10, Article 159</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</citedby><cites>FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</cites><orcidid>0000-0003-4799-7816 ; 0000-0002-5907-3787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33420035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Wonkyoung</creatorcontrib><creatorcontrib>Kang, Byoung-Hoon</creatorcontrib><creatorcontrib>Yang, Hyunwoo</creatorcontrib><creatorcontrib>Park, Moonseong</creatorcontrib><creatorcontrib>Kwak, Ji Hyun</creatorcontrib><creatorcontrib>Chung, Taerin</creatorcontrib><creatorcontrib>Jeong, Yong</creatorcontrib><creatorcontrib>Kim, Bong Kyu</creatorcontrib><creatorcontrib>Jeong, Ki-Hun</creatorcontrib><title>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications. Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.</description><subject>140/133</subject><subject>639/624/1107/527/1821</subject><subject>639/624/1111/55</subject><subject>Acetylcholine</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Correlation analysis</subject><subject>Dopamine</subject><subject>Feasibility Studies</subject><subject>Gold - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Metal Nanoparticles - chemistry</subject><subject>multidisciplinary</subject><subject>Neurological diseases</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Neurotransmitters</subject><subject>Noise</subject><subject>Raman spectroscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serotonin</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Spread spectrum</subject><subject>Temporal resolution</subject><subject>γ-Aminobutyric acid</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxS0EolXpF-gBReIcanscO7kgoapApUqVWHq2Jsl4ySqJF9uh4tvjbdrSXvDFf-b5N_P0GDsT_KPgUJ9HJZQ2JZe8lFwJKOtX7PhwKoWR8PrZ-YidxrjjeUEjaqXesiMAJfO1OmY3m30g7Iu4py6FZSo2l983BY6jv4vFiC2NpQtERU8pCwY_F94VmJKf_IihmGkJPgWc4zSkRCG-Y28cjpFOH_YTdvvl8sfFt_L65uvVxefrsqsUT2ULBIJMo4g06BZrJ9BoSZ1G4K3hAEJTD11vXJstQNU403OhW14rg1jDCbtaub3Hnd2HYcLwx3oc7P2DD1uLIQ3dSJZqgZ0Gg6S5ajJe9sQlYm7oULoD69PK2i_tRH1Hc3Y0voC-rMzDT7v1v63JBlRdZcCHB0DwvxaKye78Eubs30qVbVWyakxWyVXVBR9jIPfUQXB7yNSumdqcqb3P1B5me_98tqcvjwlmAayCmEvzlsK_3v_B_gXLrq18</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Lee, Wonkyoung</creator><creator>Kang, Byoung-Hoon</creator><creator>Yang, Hyunwoo</creator><creator>Park, Moonseong</creator><creator>Kwak, Ji Hyun</creator><creator>Chung, Taerin</creator><creator>Jeong, Yong</creator><creator>Kim, Bong Kyu</creator><creator>Jeong, Ki-Hun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4799-7816</orcidid><orcidid>https://orcid.org/0000-0002-5907-3787</orcidid></search><sort><creationdate>20210108</creationdate><title>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</title><author>Lee, Wonkyoung ; Kang, Byoung-Hoon ; Yang, Hyunwoo ; Park, Moonseong ; Kwak, Ji Hyun ; Chung, Taerin ; Jeong, Yong ; Kim, Bong Kyu ; Jeong, Ki-Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/133</topic><topic>639/624/1107/527/1821</topic><topic>639/624/1111/55</topic><topic>Acetylcholine</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Correlation analysis</topic><topic>Dopamine</topic><topic>Feasibility Studies</topic><topic>Gold - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Metal Nanoparticles - chemistry</topic><topic>multidisciplinary</topic><topic>Neurological diseases</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Neurotransmitters</topic><topic>Noise</topic><topic>Raman spectroscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serotonin</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Spread spectrum</topic><topic>Temporal resolution</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Wonkyoung</creatorcontrib><creatorcontrib>Kang, Byoung-Hoon</creatorcontrib><creatorcontrib>Yang, Hyunwoo</creatorcontrib><creatorcontrib>Park, Moonseong</creatorcontrib><creatorcontrib>Kwak, Ji Hyun</creatorcontrib><creatorcontrib>Chung, Taerin</creatorcontrib><creatorcontrib>Jeong, Yong</creatorcontrib><creatorcontrib>Kim, Bong Kyu</creatorcontrib><creatorcontrib>Jeong, Ki-Hun</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Wonkyoung</au><au>Kang, Byoung-Hoon</au><au>Yang, Hyunwoo</au><au>Park, Moonseong</au><au>Kwak, Ji Hyun</au><au>Chung, Taerin</au><au>Jeong, Yong</au><au>Kim, Bong Kyu</au><au>Jeong, Ki-Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>159</spage><epage>10</epage><pages>159-10</pages><artnum>159</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications. Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33420035</pmid><doi>10.1038/s41467-020-20413-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4799-7816</orcidid><orcidid>https://orcid.org/0000-0002-5907-3787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-01, Vol.12 (1), p.159-10, Article 159
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_journals_2476252597
source SpringerOpen; MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects 140/133
639/624/1107/527/1821
639/624/1111/55
Acetylcholine
Biosensing Techniques - methods
Biosensors
Correlation analysis
Dopamine
Feasibility Studies
Gold - chemistry
Humanities and Social Sciences
Metal Nanoparticles - chemistry
multidisciplinary
Neurological diseases
Neurotransmitter Agents - analysis
Neurotransmitters
Noise
Raman spectroscopy
Science
Science (multidisciplinary)
Serotonin
Signal to noise ratio
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman - methods
Spread spectrum
Temporal resolution
γ-Aminobutyric acid
title Spread spectrum SERS allows label-free detection of attomolar neurotransmitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spread%20spectrum%20SERS%20allows%20label-free%20detection%20of%20attomolar%20neurotransmitters&rft.jtitle=Nature%20communications&rft.au=Lee,%20Wonkyoung&rft.date=2021-01-08&rft.volume=12&rft.issue=1&rft.spage=159&rft.epage=10&rft.pages=159-10&rft.artnum=159&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-20413-8&rft_dat=%3Cproquest_doaj_%3E2476252597%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476252597&rft_id=info:pmid/33420035&rft_doaj_id=oai_doaj_org_article_e81ac637ae604930b2de02aaa76fa2f8&rfr_iscdi=true