Spread spectrum SERS allows label-free detection of attomolar neurotransmitters
The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report s...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-01, Vol.12 (1), p.159-10, Article 159 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Nature communications |
container_volume | 12 |
creator | Lee, Wonkyoung Kang, Byoung-Hoon Yang, Hyunwoo Park, Moonseong Kwak, Ji Hyun Chung, Taerin Jeong, Yong Kim, Bong Kyu Jeong, Ki-Hun |
description | The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications.
Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations. |
doi_str_mv | 10.1038/s41467-020-20413-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2476252597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e81ac637ae604930b2de02aaa76fa2f8</doaj_id><sourcerecordid>2476252597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EolXpF-gBReIcanscO7kgoapApUqVWHq2Jsl4ySqJF9uh4tvjbdrSXvDFf-b5N_P0GDsT_KPgUJ9HJZQ2JZe8lFwJKOtX7PhwKoWR8PrZ-YidxrjjeUEjaqXesiMAJfO1OmY3m30g7Iu4py6FZSo2l983BY6jv4vFiC2NpQtERU8pCwY_F94VmJKf_IihmGkJPgWc4zSkRCG-Y28cjpFOH_YTdvvl8sfFt_L65uvVxefrsqsUT2ULBIJMo4g06BZrJ9BoSZ1G4K3hAEJTD11vXJstQNU403OhW14rg1jDCbtaub3Hnd2HYcLwx3oc7P2DD1uLIQ3dSJZqgZ0Gg6S5ajJe9sQlYm7oULoD69PK2i_tRH1Hc3Y0voC-rMzDT7v1v63JBlRdZcCHB0DwvxaKye78Eubs30qVbVWyakxWyVXVBR9jIPfUQXB7yNSumdqcqb3P1B5me_98tqcvjwlmAayCmEvzlsK_3v_B_gXLrq18</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476252597</pqid></control><display><type>article</type><title>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</title><source>SpringerOpen</source><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lee, Wonkyoung ; Kang, Byoung-Hoon ; Yang, Hyunwoo ; Park, Moonseong ; Kwak, Ji Hyun ; Chung, Taerin ; Jeong, Yong ; Kim, Bong Kyu ; Jeong, Ki-Hun</creator><creatorcontrib>Lee, Wonkyoung ; Kang, Byoung-Hoon ; Yang, Hyunwoo ; Park, Moonseong ; Kwak, Ji Hyun ; Chung, Taerin ; Jeong, Yong ; Kim, Bong Kyu ; Jeong, Ki-Hun</creatorcontrib><description>The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications.
Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-20413-8</identifier><identifier>PMID: 33420035</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/624/1107/527/1821 ; 639/624/1111/55 ; Acetylcholine ; Biosensing Techniques - methods ; Biosensors ; Correlation analysis ; Dopamine ; Feasibility Studies ; Gold - chemistry ; Humanities and Social Sciences ; Metal Nanoparticles - chemistry ; multidisciplinary ; Neurological diseases ; Neurotransmitter Agents - analysis ; Neurotransmitters ; Noise ; Raman spectroscopy ; Science ; Science (multidisciplinary) ; Serotonin ; Signal to noise ratio ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Spread spectrum ; Temporal resolution ; γ-Aminobutyric acid</subject><ispartof>Nature communications, 2021-01, Vol.12 (1), p.159-10, Article 159</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</citedby><cites>FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</cites><orcidid>0000-0003-4799-7816 ; 0000-0002-5907-3787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33420035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Wonkyoung</creatorcontrib><creatorcontrib>Kang, Byoung-Hoon</creatorcontrib><creatorcontrib>Yang, Hyunwoo</creatorcontrib><creatorcontrib>Park, Moonseong</creatorcontrib><creatorcontrib>Kwak, Ji Hyun</creatorcontrib><creatorcontrib>Chung, Taerin</creatorcontrib><creatorcontrib>Jeong, Yong</creatorcontrib><creatorcontrib>Kim, Bong Kyu</creatorcontrib><creatorcontrib>Jeong, Ki-Hun</creatorcontrib><title>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications.
Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.</description><subject>140/133</subject><subject>639/624/1107/527/1821</subject><subject>639/624/1111/55</subject><subject>Acetylcholine</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Correlation analysis</subject><subject>Dopamine</subject><subject>Feasibility Studies</subject><subject>Gold - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Metal Nanoparticles - chemistry</subject><subject>multidisciplinary</subject><subject>Neurological diseases</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Neurotransmitters</subject><subject>Noise</subject><subject>Raman spectroscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serotonin</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Spread spectrum</subject><subject>Temporal resolution</subject><subject>γ-Aminobutyric acid</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxS0EolXpF-gBReIcanscO7kgoapApUqVWHq2Jsl4ySqJF9uh4tvjbdrSXvDFf-b5N_P0GDsT_KPgUJ9HJZQ2JZe8lFwJKOtX7PhwKoWR8PrZ-YidxrjjeUEjaqXesiMAJfO1OmY3m30g7Iu4py6FZSo2l983BY6jv4vFiC2NpQtERU8pCwY_F94VmJKf_IihmGkJPgWc4zSkRCG-Y28cjpFOH_YTdvvl8sfFt_L65uvVxefrsqsUT2ULBIJMo4g06BZrJ9BoSZ1G4K3hAEJTD11vXJstQNU403OhW14rg1jDCbtaub3Hnd2HYcLwx3oc7P2DD1uLIQ3dSJZqgZ0Gg6S5ajJe9sQlYm7oULoD69PK2i_tRH1Hc3Y0voC-rMzDT7v1v63JBlRdZcCHB0DwvxaKye78Eubs30qVbVWyakxWyVXVBR9jIPfUQXB7yNSumdqcqb3P1B5me_98tqcvjwlmAayCmEvzlsK_3v_B_gXLrq18</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Lee, Wonkyoung</creator><creator>Kang, Byoung-Hoon</creator><creator>Yang, Hyunwoo</creator><creator>Park, Moonseong</creator><creator>Kwak, Ji Hyun</creator><creator>Chung, Taerin</creator><creator>Jeong, Yong</creator><creator>Kim, Bong Kyu</creator><creator>Jeong, Ki-Hun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4799-7816</orcidid><orcidid>https://orcid.org/0000-0002-5907-3787</orcidid></search><sort><creationdate>20210108</creationdate><title>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</title><author>Lee, Wonkyoung ; Kang, Byoung-Hoon ; Yang, Hyunwoo ; Park, Moonseong ; Kwak, Ji Hyun ; Chung, Taerin ; Jeong, Yong ; Kim, Bong Kyu ; Jeong, Ki-Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b3e31e794ee636ba8f1a762ec6a30b703316ed3cd7fb723359f7d016b0847aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/133</topic><topic>639/624/1107/527/1821</topic><topic>639/624/1111/55</topic><topic>Acetylcholine</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Correlation analysis</topic><topic>Dopamine</topic><topic>Feasibility Studies</topic><topic>Gold - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Metal Nanoparticles - chemistry</topic><topic>multidisciplinary</topic><topic>Neurological diseases</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Neurotransmitters</topic><topic>Noise</topic><topic>Raman spectroscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serotonin</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Spread spectrum</topic><topic>Temporal resolution</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Wonkyoung</creatorcontrib><creatorcontrib>Kang, Byoung-Hoon</creatorcontrib><creatorcontrib>Yang, Hyunwoo</creatorcontrib><creatorcontrib>Park, Moonseong</creatorcontrib><creatorcontrib>Kwak, Ji Hyun</creatorcontrib><creatorcontrib>Chung, Taerin</creatorcontrib><creatorcontrib>Jeong, Yong</creatorcontrib><creatorcontrib>Kim, Bong Kyu</creatorcontrib><creatorcontrib>Jeong, Ki-Hun</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Wonkyoung</au><au>Kang, Byoung-Hoon</au><au>Yang, Hyunwoo</au><au>Park, Moonseong</au><au>Kwak, Ji Hyun</au><au>Chung, Taerin</au><au>Jeong, Yong</au><au>Kim, Bong Kyu</au><au>Jeong, Ki-Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spread spectrum SERS allows label-free detection of attomolar neurotransmitters</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>159</spage><epage>10</epage><pages>159-10</pages><artnum>159</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report spread spectrum SERS (ss-SERS) detection for the rapid quantification of neurotransmitters at the attomolar level by encoding excited light and decoding SERS signals with peak autocorrelation and near-zero cross-correlation. Compared to conventional SERS measurements, the experimental result of ss-SERS shows an exceptional improvement in the signal-to-noise ratio of more than three orders of magnitude, thus achieving a high temporal resolution of over one hundred times. The ss-SERS measurement further allows the attomolar SERS detection of dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and glutamate without Raman reporters. This approach opens up opportunities not only for investigating the early diagnostics of neurological disorders or highly sensitive biomedical SERS applications but also for developing low-cost spectroscopic biosensing applications.
Identification of neurotransmitters remains challenging for surface enhanced Raman spectroscopy (SERS) due to presence of noise. Here, the authors present spread spectrum SERS, which by encoding excited light and decoding SERS signals enables detection of unlabelled neurotransmitters at attomolar concentrations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33420035</pmid><doi>10.1038/s41467-020-20413-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4799-7816</orcidid><orcidid>https://orcid.org/0000-0002-5907-3787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-01, Vol.12 (1), p.159-10, Article 159 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_2476252597 |
source | SpringerOpen; MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | 140/133 639/624/1107/527/1821 639/624/1111/55 Acetylcholine Biosensing Techniques - methods Biosensors Correlation analysis Dopamine Feasibility Studies Gold - chemistry Humanities and Social Sciences Metal Nanoparticles - chemistry multidisciplinary Neurological diseases Neurotransmitter Agents - analysis Neurotransmitters Noise Raman spectroscopy Science Science (multidisciplinary) Serotonin Signal to noise ratio Spectroscopy Spectrum analysis Spectrum Analysis, Raman - methods Spread spectrum Temporal resolution γ-Aminobutyric acid |
title | Spread spectrum SERS allows label-free detection of attomolar neurotransmitters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spread%20spectrum%20SERS%20allows%20label-free%20detection%20of%20attomolar%20neurotransmitters&rft.jtitle=Nature%20communications&rft.au=Lee,%20Wonkyoung&rft.date=2021-01-08&rft.volume=12&rft.issue=1&rft.spage=159&rft.epage=10&rft.pages=159-10&rft.artnum=159&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-20413-8&rft_dat=%3Cproquest_doaj_%3E2476252597%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476252597&rft_id=info:pmid/33420035&rft_doaj_id=oai_doaj_org_article_e81ac637ae604930b2de02aaa76fa2f8&rfr_iscdi=true |