A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete
This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and i...
Gespeichert in:
Veröffentlicht in: | Fire safety journal 2020-06, Vol.114, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Fire safety journal |
container_volume | 114 |
creator | Pham, Duc-Tho Minh-Ngoc Vu Hung Truong Trieu Truong Son Bui Nguyen-Thoi, Trung |
description | This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model. |
doi_str_mv | 10.1016/j.firesaf.2020.103011 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2476206849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476206849</sourcerecordid><originalsourceid>FETCH-proquest_journals_24762068493</originalsourceid><addsrcrecordid>eNqNjjtOxDAQhi0EEuFxBCRL1MnazipOSrQCcQD6lXH-sI4SO9gTDsmpcICSgmpG_-ObYexOikoK2ezGanARyQyVEmrTaiHlGStkq-tSK9Wcs0LUuiu1lOqSXaU0CiG1EF3BPh84nRDnUM6wJ-OdNROfkUKZ8gY-GSJnwefQY-IUeI9ko3vFVuMUjU8Onn4guZqy5Dw3vt_CS0Tv7LfLMwh-NeSC52H44-oSw4JIDilnOSZ8GELGYM6yoTWCr8tGbYXIb7xF4LCRbPA2gnDDLgYzJdz-zmt2__T4cnguM_h9RaLjGNbos3VUe90o0bT7rv5f6guT_HUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476206849</pqid></control><display><type>article</type><title>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pham, Duc-Tho ; Minh-Ngoc Vu ; Hung Truong Trieu ; Truong Son Bui ; Nguyen-Thoi, Trung</creator><creatorcontrib>Pham, Duc-Tho ; Minh-Ngoc Vu ; Hung Truong Trieu ; Truong Son Bui ; Nguyen-Thoi, Trung</creatorcontrib><description>This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.</description><identifier>ISSN: 0379-7112</identifier><identifier>EISSN: 1873-7226</identifier><identifier>DOI: 10.1016/j.firesaf.2020.103011</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Aggregates ; Attenuation ; Cement ; Cement constituents ; Compressive strength ; Concrete ; Concrete technology ; Damage assessment ; Heat conductivity ; Heat transfer ; High temperature ; Mechanical properties ; Mesoscale phenomena ; Modulus of elasticity ; Moisture effects ; Stiffness ; Temperature ; Tensile strength ; Thermal conductivity ; Thermal expansion ; Thermal response ; Thermal strain ; Thermomechanical properties</subject><ispartof>Fire safety journal, 2020-06, Vol.114, p.1-10</ispartof><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pham, Duc-Tho</creatorcontrib><creatorcontrib>Minh-Ngoc Vu</creatorcontrib><creatorcontrib>Hung Truong Trieu</creatorcontrib><creatorcontrib>Truong Son Bui</creatorcontrib><creatorcontrib>Nguyen-Thoi, Trung</creatorcontrib><title>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</title><title>Fire safety journal</title><description>This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.</description><subject>Aggregates</subject><subject>Attenuation</subject><subject>Cement</subject><subject>Cement constituents</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Concrete technology</subject><subject>Damage assessment</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Mesoscale phenomena</subject><subject>Modulus of elasticity</subject><subject>Moisture effects</subject><subject>Stiffness</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal response</subject><subject>Thermal strain</subject><subject>Thermomechanical properties</subject><issn>0379-7112</issn><issn>1873-7226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjjtOxDAQhi0EEuFxBCRL1MnazipOSrQCcQD6lXH-sI4SO9gTDsmpcICSgmpG_-ObYexOikoK2ezGanARyQyVEmrTaiHlGStkq-tSK9Wcs0LUuiu1lOqSXaU0CiG1EF3BPh84nRDnUM6wJ-OdNROfkUKZ8gY-GSJnwefQY-IUeI9ko3vFVuMUjU8Onn4guZqy5Dw3vt_CS0Tv7LfLMwh-NeSC52H44-oSw4JIDilnOSZ8GELGYM6yoTWCr8tGbYXIb7xF4LCRbPA2gnDDLgYzJdz-zmt2__T4cnguM_h9RaLjGNbos3VUe90o0bT7rv5f6guT_HUl</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pham, Duc-Tho</creator><creator>Minh-Ngoc Vu</creator><creator>Hung Truong Trieu</creator><creator>Truong Son Bui</creator><creator>Nguyen-Thoi, Trung</creator><general>Elsevier BV</general><scope>7T2</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200601</creationdate><title>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</title><author>Pham, Duc-Tho ; Minh-Ngoc Vu ; Hung Truong Trieu ; Truong Son Bui ; Nguyen-Thoi, Trung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24762068493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Attenuation</topic><topic>Cement</topic><topic>Cement constituents</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Concrete technology</topic><topic>Damage assessment</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Mesoscale phenomena</topic><topic>Modulus of elasticity</topic><topic>Moisture effects</topic><topic>Stiffness</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal response</topic><topic>Thermal strain</topic><topic>Thermomechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Duc-Tho</creatorcontrib><creatorcontrib>Minh-Ngoc Vu</creatorcontrib><creatorcontrib>Hung Truong Trieu</creatorcontrib><creatorcontrib>Truong Son Bui</creatorcontrib><creatorcontrib>Nguyen-Thoi, Trung</creatorcontrib><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fire safety journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Duc-Tho</au><au>Minh-Ngoc Vu</au><au>Hung Truong Trieu</au><au>Truong Son Bui</au><au>Nguyen-Thoi, Trung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</atitle><jtitle>Fire safety journal</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>114</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0379-7112</issn><eissn>1873-7226</eissn><abstract>This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.firesaf.2020.103011</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-7112 |
ispartof | Fire safety journal, 2020-06, Vol.114, p.1-10 |
issn | 0379-7112 1873-7226 |
language | eng |
recordid | cdi_proquest_journals_2476206849 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aggregates Attenuation Cement Cement constituents Compressive strength Concrete Concrete technology Damage assessment Heat conductivity Heat transfer High temperature Mechanical properties Mesoscale phenomena Modulus of elasticity Moisture effects Stiffness Temperature Tensile strength Thermal conductivity Thermal expansion Thermal response Thermal strain Thermomechanical properties |
title | A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermo-mechanical%20meso-scale%20lattice%20model%20to%20describe%20the%20transient%20thermal%20strain%20and%20to%20predict%20the%20attenuation%20of%20thermo-mechanical%20properties%20at%20elevated%20temperature%20up%20to%20800%20degreeC%20of%20concrete&rft.jtitle=Fire%20safety%20journal&rft.au=Pham,%20Duc-Tho&rft.date=2020-06-01&rft.volume=114&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0379-7112&rft.eissn=1873-7226&rft_id=info:doi/10.1016/j.firesaf.2020.103011&rft_dat=%3Cproquest%3E2476206849%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476206849&rft_id=info:pmid/&rfr_iscdi=true |