A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete

This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire safety journal 2020-06, Vol.114, p.1-10
Hauptverfasser: Pham, Duc-Tho, Minh-Ngoc Vu, Hung Truong Trieu, Truong Son Bui, Nguyen-Thoi, Trung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Fire safety journal
container_volume 114
creator Pham, Duc-Tho
Minh-Ngoc Vu
Hung Truong Trieu
Truong Son Bui
Nguyen-Thoi, Trung
description This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.
doi_str_mv 10.1016/j.firesaf.2020.103011
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2476206849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476206849</sourcerecordid><originalsourceid>FETCH-proquest_journals_24762068493</originalsourceid><addsrcrecordid>eNqNjjtOxDAQhi0EEuFxBCRL1MnazipOSrQCcQD6lXH-sI4SO9gTDsmpcICSgmpG_-ObYexOikoK2ezGanARyQyVEmrTaiHlGStkq-tSK9Wcs0LUuiu1lOqSXaU0CiG1EF3BPh84nRDnUM6wJ-OdNROfkUKZ8gY-GSJnwefQY-IUeI9ko3vFVuMUjU8Onn4guZqy5Dw3vt_CS0Tv7LfLMwh-NeSC52H44-oSw4JIDilnOSZ8GELGYM6yoTWCr8tGbYXIb7xF4LCRbPA2gnDDLgYzJdz-zmt2__T4cnguM_h9RaLjGNbos3VUe90o0bT7rv5f6guT_HUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476206849</pqid></control><display><type>article</type><title>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pham, Duc-Tho ; Minh-Ngoc Vu ; Hung Truong Trieu ; Truong Son Bui ; Nguyen-Thoi, Trung</creator><creatorcontrib>Pham, Duc-Tho ; Minh-Ngoc Vu ; Hung Truong Trieu ; Truong Son Bui ; Nguyen-Thoi, Trung</creatorcontrib><description>This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.</description><identifier>ISSN: 0379-7112</identifier><identifier>EISSN: 1873-7226</identifier><identifier>DOI: 10.1016/j.firesaf.2020.103011</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Aggregates ; Attenuation ; Cement ; Cement constituents ; Compressive strength ; Concrete ; Concrete technology ; Damage assessment ; Heat conductivity ; Heat transfer ; High temperature ; Mechanical properties ; Mesoscale phenomena ; Modulus of elasticity ; Moisture effects ; Stiffness ; Temperature ; Tensile strength ; Thermal conductivity ; Thermal expansion ; Thermal response ; Thermal strain ; Thermomechanical properties</subject><ispartof>Fire safety journal, 2020-06, Vol.114, p.1-10</ispartof><rights>Copyright Elsevier BV Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pham, Duc-Tho</creatorcontrib><creatorcontrib>Minh-Ngoc Vu</creatorcontrib><creatorcontrib>Hung Truong Trieu</creatorcontrib><creatorcontrib>Truong Son Bui</creatorcontrib><creatorcontrib>Nguyen-Thoi, Trung</creatorcontrib><title>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</title><title>Fire safety journal</title><description>This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.</description><subject>Aggregates</subject><subject>Attenuation</subject><subject>Cement</subject><subject>Cement constituents</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Concrete technology</subject><subject>Damage assessment</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Mesoscale phenomena</subject><subject>Modulus of elasticity</subject><subject>Moisture effects</subject><subject>Stiffness</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal response</subject><subject>Thermal strain</subject><subject>Thermomechanical properties</subject><issn>0379-7112</issn><issn>1873-7226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjjtOxDAQhi0EEuFxBCRL1MnazipOSrQCcQD6lXH-sI4SO9gTDsmpcICSgmpG_-ObYexOikoK2ezGanARyQyVEmrTaiHlGStkq-tSK9Wcs0LUuiu1lOqSXaU0CiG1EF3BPh84nRDnUM6wJ-OdNROfkUKZ8gY-GSJnwefQY-IUeI9ko3vFVuMUjU8Onn4guZqy5Dw3vt_CS0Tv7LfLMwh-NeSC52H44-oSw4JIDilnOSZ8GELGYM6yoTWCr8tGbYXIb7xF4LCRbPA2gnDDLgYzJdz-zmt2__T4cnguM_h9RaLjGNbos3VUe90o0bT7rv5f6guT_HUl</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pham, Duc-Tho</creator><creator>Minh-Ngoc Vu</creator><creator>Hung Truong Trieu</creator><creator>Truong Son Bui</creator><creator>Nguyen-Thoi, Trung</creator><general>Elsevier BV</general><scope>7T2</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20200601</creationdate><title>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</title><author>Pham, Duc-Tho ; Minh-Ngoc Vu ; Hung Truong Trieu ; Truong Son Bui ; Nguyen-Thoi, Trung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24762068493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Attenuation</topic><topic>Cement</topic><topic>Cement constituents</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Concrete technology</topic><topic>Damage assessment</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Mesoscale phenomena</topic><topic>Modulus of elasticity</topic><topic>Moisture effects</topic><topic>Stiffness</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal response</topic><topic>Thermal strain</topic><topic>Thermomechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Duc-Tho</creatorcontrib><creatorcontrib>Minh-Ngoc Vu</creatorcontrib><creatorcontrib>Hung Truong Trieu</creatorcontrib><creatorcontrib>Truong Son Bui</creatorcontrib><creatorcontrib>Nguyen-Thoi, Trung</creatorcontrib><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fire safety journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Duc-Tho</au><au>Minh-Ngoc Vu</au><au>Hung Truong Trieu</au><au>Truong Son Bui</au><au>Nguyen-Thoi, Trung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete</atitle><jtitle>Fire safety journal</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>114</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0379-7112</issn><eissn>1873-7226</eissn><abstract>This study proposes a mesoscopic thermo-mechanical (TM) lattice model to describe the transient thermal strain (TTS) behaviour of concrete and to predict the attenuation of its TM properties as a function of temperature. In such a model, concrete includes three constituents: cement, aggregates and interfacial transition zones (ITZ). A damage model including softening behaviour is used to describe the behaviour of the cement matrix and the ITZ, while the aggregates are assumed to be elastic. The thermal response within mesoscopic concrete is represented by a non-linear heat transfer equation, where the mechanical effect on thermal conductivity is taken into account. Mismatch of thermal expansions and stiffness between material phases (cement, aggregate) causes damage of concrete subjected to thermal and/or mechanical loadings, which makes decrease the concrete properties. Five parameters are envisaged: Young's modulus, compressive strength, direct tensile strength, thermal conductivity and thermal expansion coefficient. TM responses of concrete, especially TTS phenomenon and evolution of some key properties appear to be captured by the proposed mesoscale TM model (without consideration of moisture effects). Comparisons with experimental studies are drawn through this paper to show the ability of the present model.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.firesaf.2020.103011</doi></addata></record>
fulltext fulltext
identifier ISSN: 0379-7112
ispartof Fire safety journal, 2020-06, Vol.114, p.1-10
issn 0379-7112
1873-7226
language eng
recordid cdi_proquest_journals_2476206849
source Elsevier ScienceDirect Journals Complete
subjects Aggregates
Attenuation
Cement
Cement constituents
Compressive strength
Concrete
Concrete technology
Damage assessment
Heat conductivity
Heat transfer
High temperature
Mechanical properties
Mesoscale phenomena
Modulus of elasticity
Moisture effects
Stiffness
Temperature
Tensile strength
Thermal conductivity
Thermal expansion
Thermal response
Thermal strain
Thermomechanical properties
title A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 degreeC of concrete
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermo-mechanical%20meso-scale%20lattice%20model%20to%20describe%20the%20transient%20thermal%20strain%20and%20to%20predict%20the%20attenuation%20of%20thermo-mechanical%20properties%20at%20elevated%20temperature%20up%20to%20800%20degreeC%20of%20concrete&rft.jtitle=Fire%20safety%20journal&rft.au=Pham,%20Duc-Tho&rft.date=2020-06-01&rft.volume=114&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0379-7112&rft.eissn=1873-7226&rft_id=info:doi/10.1016/j.firesaf.2020.103011&rft_dat=%3Cproquest%3E2476206849%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476206849&rft_id=info:pmid/&rfr_iscdi=true