Complexity-separating graph classes for vertex, edge and total colouring
Given a class A of graphs and a decision problem π belonging to NP, we say that a full complexity dichotomy of A was obtained if one describes a partition of A into subclasses such that π is classified as polynomial or NP-complete when restricted to each subclass. The concept of full complexity dich...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-07, Vol.281, p.162-171 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | |
container_start_page | 162 |
container_title | Discrete Applied Mathematics |
container_volume | 281 |
creator | de Figueiredo, Celina M.H. |
description | Given a class A of graphs and a decision problem π belonging to NP, we say that a full complexity dichotomy of A was obtained if one describes a partition of A into subclasses such that π is classified as polynomial or NP-complete when restricted to each subclass. The concept of full complexity dichotomy is particularly interesting for the investigation of NP-complete problems: as we partition a class A into NP-complete subclasses and polynomial subclasses, it becomes clearer why the problem is NP-complete in A. The class C of graphs that do not contain a cycle with a unique chord was studied by Trotignon and Vušković who proved a structure theorem which led to solving the vertex-colouring problem in polynomial time. In the present survey, we apply the structure theorem to study the complexity of edge-colouring and total-colouring, and show that even for graph classes with strong structure and powerful decompositions, the edge-colouring problem may be difficult. We discuss several surprising complexity dichotomies found in subclasses of C, and the concepts of separating problem proposed by David S. Johnson and the dual concept of separating class. |
doi_str_mv | 10.1016/j.dam.2019.02.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476174945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19301325</els_id><sourcerecordid>2476174945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5b0560a348a6e84dac09ba0776656245f7354089d234745c2ff2e33faf5c27db3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuCV3fNd3bxJEWtUPCi4C2kyaTusu2uSVraf29KPXuaGXifmeFB6JbgimAiH7rKmXVFMWkqTCvMmjM0IbWipVSKnKNJzsiSkvrrEl3F2GGMSZ4maD4b1mMP-zYdygijCSa1m1WxCmb8LmxvYoRY-CEUOwgJ9vcFuBUUZuOKNCTTF3boh23IyDW68KaPcPNXp-jz5fljNi8X769vs6dFaRkVqRRLLCQ2jNdGQs2dsbhZGqyUlEJSLrxiguO6cZRxxYWl3lNgzBufe-WWbIruTnvHMPxsISbd5Qc2-aSmXEmieMNFTpFTyoYhxgBej6Fdm3DQBOujMN3pLEwfhWlMdRaWmccTA_n9XQtBR9vCxoJrA9ik3dD-Q_8C9WhytA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476174945</pqid></control><display><type>article</type><title>Complexity-separating graph classes for vertex, edge and total colouring</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Figueiredo, Celina M.H.</creator><creatorcontrib>de Figueiredo, Celina M.H.</creatorcontrib><description>Given a class A of graphs and a decision problem π belonging to NP, we say that a full complexity dichotomy of A was obtained if one describes a partition of A into subclasses such that π is classified as polynomial or NP-complete when restricted to each subclass. The concept of full complexity dichotomy is particularly interesting for the investigation of NP-complete problems: as we partition a class A into NP-complete subclasses and polynomial subclasses, it becomes clearer why the problem is NP-complete in A. The class C of graphs that do not contain a cycle with a unique chord was studied by Trotignon and Vušković who proved a structure theorem which led to solving the vertex-colouring problem in polynomial time. In the present survey, we apply the structure theorem to study the complexity of edge-colouring and total-colouring, and show that even for graph classes with strong structure and powerful decompositions, the edge-colouring problem may be difficult. We discuss several surprising complexity dichotomies found in subclasses of C, and the concepts of separating problem proposed by David S. Johnson and the dual concept of separating class.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.02.039</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis of algorithms and problem complexity ; Complexity ; Dichotomies ; Graph algorithms ; Graph coloring ; Graphs ; Partitions (mathematics) ; Polynomials ; Structural characterization of types of graphs ; Theorems</subject><ispartof>Discrete Applied Mathematics, 2020-07, Vol.281, p.162-171</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5b0560a348a6e84dac09ba0776656245f7354089d234745c2ff2e33faf5c27db3</citedby><cites>FETCH-LOGICAL-c325t-5b0560a348a6e84dac09ba0776656245f7354089d234745c2ff2e33faf5c27db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2019.02.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>de Figueiredo, Celina M.H.</creatorcontrib><title>Complexity-separating graph classes for vertex, edge and total colouring</title><title>Discrete Applied Mathematics</title><description>Given a class A of graphs and a decision problem π belonging to NP, we say that a full complexity dichotomy of A was obtained if one describes a partition of A into subclasses such that π is classified as polynomial or NP-complete when restricted to each subclass. The concept of full complexity dichotomy is particularly interesting for the investigation of NP-complete problems: as we partition a class A into NP-complete subclasses and polynomial subclasses, it becomes clearer why the problem is NP-complete in A. The class C of graphs that do not contain a cycle with a unique chord was studied by Trotignon and Vušković who proved a structure theorem which led to solving the vertex-colouring problem in polynomial time. In the present survey, we apply the structure theorem to study the complexity of edge-colouring and total-colouring, and show that even for graph classes with strong structure and powerful decompositions, the edge-colouring problem may be difficult. We discuss several surprising complexity dichotomies found in subclasses of C, and the concepts of separating problem proposed by David S. Johnson and the dual concept of separating class.</description><subject>Analysis of algorithms and problem complexity</subject><subject>Complexity</subject><subject>Dichotomies</subject><subject>Graph algorithms</subject><subject>Graph coloring</subject><subject>Graphs</subject><subject>Partitions (mathematics)</subject><subject>Polynomials</subject><subject>Structural characterization of types of graphs</subject><subject>Theorems</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuCV3fNd3bxJEWtUPCi4C2kyaTusu2uSVraf29KPXuaGXifmeFB6JbgimAiH7rKmXVFMWkqTCvMmjM0IbWipVSKnKNJzsiSkvrrEl3F2GGMSZ4maD4b1mMP-zYdygijCSa1m1WxCmb8LmxvYoRY-CEUOwgJ9vcFuBUUZuOKNCTTF3boh23IyDW68KaPcPNXp-jz5fljNi8X769vs6dFaRkVqRRLLCQ2jNdGQs2dsbhZGqyUlEJSLrxiguO6cZRxxYWl3lNgzBufe-WWbIruTnvHMPxsISbd5Qc2-aSmXEmieMNFTpFTyoYhxgBej6Fdm3DQBOujMN3pLEwfhWlMdRaWmccTA_n9XQtBR9vCxoJrA9ik3dD-Q_8C9WhytA</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>de Figueiredo, Celina M.H.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200715</creationdate><title>Complexity-separating graph classes for vertex, edge and total colouring</title><author>de Figueiredo, Celina M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5b0560a348a6e84dac09ba0776656245f7354089d234745c2ff2e33faf5c27db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis of algorithms and problem complexity</topic><topic>Complexity</topic><topic>Dichotomies</topic><topic>Graph algorithms</topic><topic>Graph coloring</topic><topic>Graphs</topic><topic>Partitions (mathematics)</topic><topic>Polynomials</topic><topic>Structural characterization of types of graphs</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Figueiredo, Celina M.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Figueiredo, Celina M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity-separating graph classes for vertex, edge and total colouring</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>281</volume><spage>162</spage><epage>171</epage><pages>162-171</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a class A of graphs and a decision problem π belonging to NP, we say that a full complexity dichotomy of A was obtained if one describes a partition of A into subclasses such that π is classified as polynomial or NP-complete when restricted to each subclass. The concept of full complexity dichotomy is particularly interesting for the investigation of NP-complete problems: as we partition a class A into NP-complete subclasses and polynomial subclasses, it becomes clearer why the problem is NP-complete in A. The class C of graphs that do not contain a cycle with a unique chord was studied by Trotignon and Vušković who proved a structure theorem which led to solving the vertex-colouring problem in polynomial time. In the present survey, we apply the structure theorem to study the complexity of edge-colouring and total-colouring, and show that even for graph classes with strong structure and powerful decompositions, the edge-colouring problem may be difficult. We discuss several surprising complexity dichotomies found in subclasses of C, and the concepts of separating problem proposed by David S. Johnson and the dual concept of separating class.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.02.039</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2020-07, Vol.281, p.162-171 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2476174945 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Analysis of algorithms and problem complexity Complexity Dichotomies Graph algorithms Graph coloring Graphs Partitions (mathematics) Polynomials Structural characterization of types of graphs Theorems |
title | Complexity-separating graph classes for vertex, edge and total colouring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity-separating%20graph%20classes%20for%20vertex,%20edge%20and%20total%20colouring&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=de%20Figueiredo,%20Celina%20M.H.&rft.date=2020-07-15&rft.volume=281&rft.spage=162&rft.epage=171&rft.pages=162-171&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.02.039&rft_dat=%3Cproquest_cross%3E2476174945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476174945&rft_id=info:pmid/&rft_els_id=S0166218X19301325&rfr_iscdi=true |