Complexity of correspondence H-colourings

Correspondence homomorphisms generalize standard homomorphisms as well as correspondence colourings (also known as DP-colourings). For a fixed target graph H, we study the problem of deciding whether an input graph G, with each edge labelled by a pair of permutations of V(H), admits a homomorphism t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-07, Vol.281, p.235-245
Hauptverfasser: Feder, Tomás, Hell, Pavol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue
container_start_page 235
container_title Discrete Applied Mathematics
container_volume 281
creator Feder, Tomás
Hell, Pavol
description Correspondence homomorphisms generalize standard homomorphisms as well as correspondence colourings (also known as DP-colourings). For a fixed target graph H, we study the problem of deciding whether an input graph G, with each edge labelled by a pair of permutations of V(H), admits a homomorphism to H ‘corresponding’ to the labels. Homomorphisms to H are called H-colourings, and we employ the similar term correspondence H-colourings for correspondence homomorphisms to H. We classify the complexity of this problem as a function of the fixed graph H. It turns out that there is dichotomy — each of the problems is polynomial-time solvable or NP-complete. While most graphs H yield NP-complete problems, there are interesting cases of graphs H for which the problem can be solved in polynomial time by Gaussian elimination. We also classify the complexity of the analogous correspondence list homomorphism problems, and also the complexity of a bipartite version of both problems. We give detailed proofs for the case when H is reflexive, and, for the record, sketch the remaining proofs.
doi_str_mv 10.1016/j.dam.2019.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476174919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19305128</els_id><sourcerecordid>2476174919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c5afae7ecdec723cb6c606e0ac929d43a580a5d79b6dc1b4cf3bbe5989b315c63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFvBk4ddM_sn2eBJilqh4EXBW8hOZiVLu1mTrdhvb0o9exoG3pt578fYNfAcOIi7PrdmmxccVA6Qc16fsBk0ssiElHDKZkkjsgKaj3N2EWPPOYe0zdjt0m_HDf24ab_w3QJ9CBRHP1gakBarDP3G74IbPuMlO-vMJtLV35yz96fHt-UqW78-vywf1hkWUk4Z1qYzJAktoSxKbAUKLogbVIWyVWnqhpvaStUKi9BW2JVtS7VqVFtCjaKcs5vj3TH4rx3FSfcpwZBe6qKSAmSlQCUVHFUYfIyBOj0GtzVhr4HrAxHd60REH4hoAJ2IJM_90UMp_rejoCO6Q0_rAuGkrXf_uH8BvmNpAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476174919</pqid></control><display><type>article</type><title>Complexity of correspondence H-colourings</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Feder, Tomás ; Hell, Pavol</creator><creatorcontrib>Feder, Tomás ; Hell, Pavol</creatorcontrib><description>Correspondence homomorphisms generalize standard homomorphisms as well as correspondence colourings (also known as DP-colourings). For a fixed target graph H, we study the problem of deciding whether an input graph G, with each edge labelled by a pair of permutations of V(H), admits a homomorphism to H ‘corresponding’ to the labels. Homomorphisms to H are called H-colourings, and we employ the similar term correspondence H-colourings for correspondence homomorphisms to H. We classify the complexity of this problem as a function of the fixed graph H. It turns out that there is dichotomy — each of the problems is polynomial-time solvable or NP-complete. While most graphs H yield NP-complete problems, there are interesting cases of graphs H for which the problem can be solved in polynomial time by Gaussian elimination. We also classify the complexity of the analogous correspondence list homomorphism problems, and also the complexity of a bipartite version of both problems. We give detailed proofs for the case when H is reflexive, and, for the record, sketch the remaining proofs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.11.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Classification ; Complexity ; Correspondence ; Correspondence colourings ; Dichotomy ; DP-colourings ; Gaussian elimination ; Graph homomorphisms ; Graphs ; H-colourings ; Homomorphisms ; NP-completeness ; Permutations ; Polynomial algorithms ; Polynomials</subject><ispartof>Discrete Applied Mathematics, 2020-07, Vol.281, p.235-245</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-c5afae7ecdec723cb6c606e0ac929d43a580a5d79b6dc1b4cf3bbe5989b315c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2019.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Feder, Tomás</creatorcontrib><creatorcontrib>Hell, Pavol</creatorcontrib><title>Complexity of correspondence H-colourings</title><title>Discrete Applied Mathematics</title><description>Correspondence homomorphisms generalize standard homomorphisms as well as correspondence colourings (also known as DP-colourings). For a fixed target graph H, we study the problem of deciding whether an input graph G, with each edge labelled by a pair of permutations of V(H), admits a homomorphism to H ‘corresponding’ to the labels. Homomorphisms to H are called H-colourings, and we employ the similar term correspondence H-colourings for correspondence homomorphisms to H. We classify the complexity of this problem as a function of the fixed graph H. It turns out that there is dichotomy — each of the problems is polynomial-time solvable or NP-complete. While most graphs H yield NP-complete problems, there are interesting cases of graphs H for which the problem can be solved in polynomial time by Gaussian elimination. We also classify the complexity of the analogous correspondence list homomorphism problems, and also the complexity of a bipartite version of both problems. We give detailed proofs for the case when H is reflexive, and, for the record, sketch the remaining proofs.</description><subject>Classification</subject><subject>Complexity</subject><subject>Correspondence</subject><subject>Correspondence colourings</subject><subject>Dichotomy</subject><subject>DP-colourings</subject><subject>Gaussian elimination</subject><subject>Graph homomorphisms</subject><subject>Graphs</subject><subject>H-colourings</subject><subject>Homomorphisms</subject><subject>NP-completeness</subject><subject>Permutations</subject><subject>Polynomial algorithms</subject><subject>Polynomials</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFvBk4ddM_sn2eBJilqh4EXBW8hOZiVLu1mTrdhvb0o9exoG3pt578fYNfAcOIi7PrdmmxccVA6Qc16fsBk0ssiElHDKZkkjsgKaj3N2EWPPOYe0zdjt0m_HDf24ab_w3QJ9CBRHP1gakBarDP3G74IbPuMlO-vMJtLV35yz96fHt-UqW78-vywf1hkWUk4Z1qYzJAktoSxKbAUKLogbVIWyVWnqhpvaStUKi9BW2JVtS7VqVFtCjaKcs5vj3TH4rx3FSfcpwZBe6qKSAmSlQCUVHFUYfIyBOj0GtzVhr4HrAxHd60REH4hoAJ2IJM_90UMp_rejoCO6Q0_rAuGkrXf_uH8BvmNpAw</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Feder, Tomás</creator><creator>Hell, Pavol</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200715</creationdate><title>Complexity of correspondence H-colourings</title><author>Feder, Tomás ; Hell, Pavol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c5afae7ecdec723cb6c606e0ac929d43a580a5d79b6dc1b4cf3bbe5989b315c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Complexity</topic><topic>Correspondence</topic><topic>Correspondence colourings</topic><topic>Dichotomy</topic><topic>DP-colourings</topic><topic>Gaussian elimination</topic><topic>Graph homomorphisms</topic><topic>Graphs</topic><topic>H-colourings</topic><topic>Homomorphisms</topic><topic>NP-completeness</topic><topic>Permutations</topic><topic>Polynomial algorithms</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feder, Tomás</creatorcontrib><creatorcontrib>Hell, Pavol</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feder, Tomás</au><au>Hell, Pavol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of correspondence H-colourings</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>281</volume><spage>235</spage><epage>245</epage><pages>235-245</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Correspondence homomorphisms generalize standard homomorphisms as well as correspondence colourings (also known as DP-colourings). For a fixed target graph H, we study the problem of deciding whether an input graph G, with each edge labelled by a pair of permutations of V(H), admits a homomorphism to H ‘corresponding’ to the labels. Homomorphisms to H are called H-colourings, and we employ the similar term correspondence H-colourings for correspondence homomorphisms to H. We classify the complexity of this problem as a function of the fixed graph H. It turns out that there is dichotomy — each of the problems is polynomial-time solvable or NP-complete. While most graphs H yield NP-complete problems, there are interesting cases of graphs H for which the problem can be solved in polynomial time by Gaussian elimination. We also classify the complexity of the analogous correspondence list homomorphism problems, and also the complexity of a bipartite version of both problems. We give detailed proofs for the case when H is reflexive, and, for the record, sketch the remaining proofs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.11.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-07, Vol.281, p.235-245
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2476174919
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Classification
Complexity
Correspondence
Correspondence colourings
Dichotomy
DP-colourings
Gaussian elimination
Graph homomorphisms
Graphs
H-colourings
Homomorphisms
NP-completeness
Permutations
Polynomial algorithms
Polynomials
title Complexity of correspondence H-colourings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20correspondence%20H-colourings&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Feder,%20Tom%C3%A1s&rft.date=2020-07-15&rft.volume=281&rft.spage=235&rft.epage=245&rft.pages=235-245&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.11.005&rft_dat=%3Cproquest_cross%3E2476174919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476174919&rft_id=info:pmid/&rft_els_id=S0166218X19305128&rfr_iscdi=true