On strictly chordality-k graphs
Strictly Chordality-k graphs (SCk graphs) are graphs which are either cycle free or every induced cycle is exactly k, for some fixed k,k≥3. Note that k=3 and k=4 are precisely the Chordal graphs and Chordal Bipartite graphs, respectively. In this paper, we initiate a structural and an algorithmic st...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-06, Vol.280, p.93-112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 93 |
container_title | Discrete Applied Mathematics |
container_volume | 280 |
creator | Dhanalakshmi, S. Sadagopan, N. |
description | Strictly Chordality-k graphs (SCk graphs) are graphs which are either cycle free or every induced cycle is exactly k, for some fixed k,k≥3. Note that k=3 and k=4 are precisely the Chordal graphs and Chordal Bipartite graphs, respectively. In this paper, we initiate a structural and an algorithmic study of SCk,k≥5 graphs. |
doi_str_mv | 10.1016/j.dam.2018.06.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476172036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18303822</els_id><sourcerecordid>2476172036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3d0bee829603a2f77cdaab67dd935aee30e808eacab8c8127c427138e6fe1f813</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wJMFz7vOJG2S4kmKX1DoRcFbyCazNuu2uyZbof_elHr2NAy8zzvDw9g1QomA8q4pvd2UHFCXIEvg-oSNUCteSKXwlI1yRhYc9cc5u0ipAQDM24jdrLaTNMTghnY_cesuetuGYV98TT6j7dfpkp3Vtk109TfH7P3p8W3xUixXz6-Lh2XhBJ8NhfBQEWk-lyAsr5Vy3tpKKu_nYmaJBJAGTdbZSjuNXLkpVyg0yZqw1ijG7PbY28fue0dpME23i9t80vCpkqg4CJlTeEy52KUUqTZ9DBsb9wbBHDyYxmQP5uDBgDTZQ2bujwzl938CRZNcoK0jHyK5wfgu_EP_AiZAZGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476172036</pqid></control><display><type>article</type><title>On strictly chordality-k graphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dhanalakshmi, S. ; Sadagopan, N.</creator><creatorcontrib>Dhanalakshmi, S. ; Sadagopan, N.</creatorcontrib><description>Strictly Chordality-k graphs (SCk graphs) are graphs which are either cycle free or every induced cycle is exactly k, for some fixed k,k≥3. Note that k=3 and k=4 are precisely the Chordal graphs and Chordal Bipartite graphs, respectively. In this paper, we initiate a structural and an algorithmic study of SCk,k≥5 graphs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.06.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Girth = chordality = [formula omitted] ; Graphs ; Minimal vertex separator ; Treewidth</subject><ispartof>Discrete Applied Mathematics, 2020-06, Vol.280, p.93-112</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3d0bee829603a2f77cdaab67dd935aee30e808eacab8c8127c427138e6fe1f813</citedby><cites>FETCH-LOGICAL-c325t-3d0bee829603a2f77cdaab67dd935aee30e808eacab8c8127c427138e6fe1f813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2018.06.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dhanalakshmi, S.</creatorcontrib><creatorcontrib>Sadagopan, N.</creatorcontrib><title>On strictly chordality-k graphs</title><title>Discrete Applied Mathematics</title><description>Strictly Chordality-k graphs (SCk graphs) are graphs which are either cycle free or every induced cycle is exactly k, for some fixed k,k≥3. Note that k=3 and k=4 are precisely the Chordal graphs and Chordal Bipartite graphs, respectively. In this paper, we initiate a structural and an algorithmic study of SCk,k≥5 graphs.</description><subject>Girth = chordality = [formula omitted]</subject><subject>Graphs</subject><subject>Minimal vertex separator</subject><subject>Treewidth</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wJMFz7vOJG2S4kmKX1DoRcFbyCazNuu2uyZbof_elHr2NAy8zzvDw9g1QomA8q4pvd2UHFCXIEvg-oSNUCteSKXwlI1yRhYc9cc5u0ipAQDM24jdrLaTNMTghnY_cesuetuGYV98TT6j7dfpkp3Vtk109TfH7P3p8W3xUixXz6-Lh2XhBJ8NhfBQEWk-lyAsr5Vy3tpKKu_nYmaJBJAGTdbZSjuNXLkpVyg0yZqw1ijG7PbY28fue0dpME23i9t80vCpkqg4CJlTeEy52KUUqTZ9DBsb9wbBHDyYxmQP5uDBgDTZQ2bujwzl938CRZNcoK0jHyK5wfgu_EP_AiZAZGQ</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Dhanalakshmi, S.</creator><creator>Sadagopan, N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200615</creationdate><title>On strictly chordality-k graphs</title><author>Dhanalakshmi, S. ; Sadagopan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3d0bee829603a2f77cdaab67dd935aee30e808eacab8c8127c427138e6fe1f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Girth = chordality = [formula omitted]</topic><topic>Graphs</topic><topic>Minimal vertex separator</topic><topic>Treewidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhanalakshmi, S.</creatorcontrib><creatorcontrib>Sadagopan, N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhanalakshmi, S.</au><au>Sadagopan, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On strictly chordality-k graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>280</volume><spage>93</spage><epage>112</epage><pages>93-112</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Strictly Chordality-k graphs (SCk graphs) are graphs which are either cycle free or every induced cycle is exactly k, for some fixed k,k≥3. Note that k=3 and k=4 are precisely the Chordal graphs and Chordal Bipartite graphs, respectively. In this paper, we initiate a structural and an algorithmic study of SCk,k≥5 graphs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.06.028</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2020-06, Vol.280, p.93-112 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2476172036 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Girth = chordality = [formula omitted] Graphs Minimal vertex separator Treewidth |
title | On strictly chordality-k graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20strictly%20chordality-k%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Dhanalakshmi,%20S.&rft.date=2020-06-15&rft.volume=280&rft.spage=93&rft.epage=112&rft.pages=93-112&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.06.028&rft_dat=%3Cproquest_cross%3E2476172036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476172036&rft_id=info:pmid/&rft_els_id=S0166218X18303822&rfr_iscdi=true |