True experimental reconstruction of quantum states and processes via convex optimization
We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2021, Vol.20 (1), Article 19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 20 |
creator | Gaikwad, Akshay Arvind Dorai, Kavita |
description | We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system. |
doi_str_mv | 10.1007/s11128-020-02930-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476157175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476157175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhhdRsH78AU8Bj7I6SbpfRyl-geClgreQZieyYpM2ydbaX--0K3oTDyET8j4z875ZdsbhkgNUV5FzLuocBNBpJOSbvWzEi0rmXEqxv6vpqyqKw-woxjcAwcu6HGUv09Ajw_UCQzdHl_Q7C2i8iyn0JnXeMW_Zstcu9XMWk04YmXYtWwRvMEZ6rTrNCFjhmvlF6ubdRm-5k-zA6veIp9_3cfZ8ezOd3OePT3cPk-vH3EjepNygaW1dj2kb2dqi5TPboG0ElI0tLOczTSb0zOrajEUBum55actWCClMAy3K4-x86EsbLXuMSb35PjgaqcS4Ksk3rwpSiUFlgo8xoFUL8qvDp-KgtgmqIUFFCapdgmpD0MUAfeDM22g6dAZ_QAAooSZtRRVsR9T_V0-6tEtp4nuXCJUDGknuXjH8evhjvS-aJ5ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476157175</pqid></control><display><type>article</type><title>True experimental reconstruction of quantum states and processes via convex optimization</title><source>SpringerNature Journals</source><creator>Gaikwad, Akshay ; Arvind ; Dorai, Kavita</creator><creatorcontrib>Gaikwad, Akshay ; Arvind ; Dorai, Kavita</creatorcontrib><description>We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02930-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Convex analysis ; Convexity ; Data Structures and Information Theory ; Density ; Mathematical analysis ; Mathematical Physics ; Matrix methods ; Microprocessors ; NMR ; Nuclear magnetic resonance ; Operators (mathematics) ; Optimization ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Mathematical ; Physics, Multidisciplinary ; Quantum Computing ; Quantum Information Technology ; Quantum phenomena ; Quantum Physics ; Quantum Science & Technology ; Qubits (quantum computing) ; Science & Technology ; Spintronics ; System dynamics</subject><ispartof>Quantum information processing, 2021, Vol.20 (1), Article 19</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608029700005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</citedby><cites>FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</cites><orcidid>0000-0002-9876-4839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02930-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02930-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gaikwad, Akshay</creatorcontrib><creatorcontrib>Arvind</creatorcontrib><creatorcontrib>Dorai, Kavita</creatorcontrib><title>True experimental reconstruction of quantum states and processes via convex optimization</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><addtitle>QUANTUM INF PROCESS</addtitle><description>We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.</description><subject>Convex analysis</subject><subject>Convexity</subject><subject>Data Structures and Information Theory</subject><subject>Density</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Matrix methods</subject><subject>Microprocessors</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Mathematical</subject><subject>Physics, Multidisciplinary</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Quantum Science & Technology</subject><subject>Qubits (quantum computing)</subject><subject>Science & Technology</subject><subject>Spintronics</subject><subject>System dynamics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhhdRsH78AU8Bj7I6SbpfRyl-geClgreQZieyYpM2ydbaX--0K3oTDyET8j4z875ZdsbhkgNUV5FzLuocBNBpJOSbvWzEi0rmXEqxv6vpqyqKw-woxjcAwcu6HGUv09Ajw_UCQzdHl_Q7C2i8iyn0JnXeMW_Zstcu9XMWk04YmXYtWwRvMEZ6rTrNCFjhmvlF6ubdRm-5k-zA6veIp9_3cfZ8ezOd3OePT3cPk-vH3EjepNygaW1dj2kb2dqi5TPboG0ElI0tLOczTSb0zOrajEUBum55actWCClMAy3K4-x86EsbLXuMSb35PjgaqcS4Ksk3rwpSiUFlgo8xoFUL8qvDp-KgtgmqIUFFCapdgmpD0MUAfeDM22g6dAZ_QAAooSZtRRVsR9T_V0-6tEtp4nuXCJUDGknuXjH8evhjvS-aJ5ds</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Gaikwad, Akshay</creator><creator>Arvind</creator><creator>Dorai, Kavita</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9876-4839</orcidid></search><sort><creationdate>2021</creationdate><title>True experimental reconstruction of quantum states and processes via convex optimization</title><author>Gaikwad, Akshay ; Arvind ; Dorai, Kavita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convex analysis</topic><topic>Convexity</topic><topic>Data Structures and Information Theory</topic><topic>Density</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Matrix methods</topic><topic>Microprocessors</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Mathematical</topic><topic>Physics, Multidisciplinary</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Quantum Science & Technology</topic><topic>Qubits (quantum computing)</topic><topic>Science & Technology</topic><topic>Spintronics</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Akshay</creatorcontrib><creatorcontrib>Arvind</creatorcontrib><creatorcontrib>Dorai, Kavita</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Akshay</au><au>Arvind</au><au>Dorai, Kavita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>True experimental reconstruction of quantum states and processes via convex optimization</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><stitle>QUANTUM INF PROCESS</stitle><date>2021</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><artnum>19</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02930-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9876-4839</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2021, Vol.20 (1), Article 19 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2476157175 |
source | SpringerNature Journals |
subjects | Convex analysis Convexity Data Structures and Information Theory Density Mathematical analysis Mathematical Physics Matrix methods Microprocessors NMR Nuclear magnetic resonance Operators (mathematics) Optimization Physical Sciences Physics Physics and Astronomy Physics, Mathematical Physics, Multidisciplinary Quantum Computing Quantum Information Technology Quantum phenomena Quantum Physics Quantum Science & Technology Qubits (quantum computing) Science & Technology Spintronics System dynamics |
title | True experimental reconstruction of quantum states and processes via convex optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=True%20experimental%20reconstruction%20of%20quantum%20states%20and%20processes%20via%20convex%20optimization&rft.jtitle=Quantum%20information%20processing&rft.au=Gaikwad,%20Akshay&rft.date=2021&rft.volume=20&rft.issue=1&rft.artnum=19&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02930-z&rft_dat=%3Cproquest_cross%3E2476157175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476157175&rft_id=info:pmid/&rfr_iscdi=true |