True experimental reconstruction of quantum states and processes via convex optimization

We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2021, Vol.20 (1), Article 19
Hauptverfasser: Gaikwad, Akshay, Arvind, Dorai, Kavita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Quantum information processing
container_volume 20
creator Gaikwad, Akshay
Arvind
Dorai, Kavita
description We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.
doi_str_mv 10.1007/s11128-020-02930-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476157175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476157175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhhdRsH78AU8Bj7I6SbpfRyl-geClgreQZieyYpM2ydbaX--0K3oTDyET8j4z875ZdsbhkgNUV5FzLuocBNBpJOSbvWzEi0rmXEqxv6vpqyqKw-woxjcAwcu6HGUv09Ajw_UCQzdHl_Q7C2i8iyn0JnXeMW_Zstcu9XMWk04YmXYtWwRvMEZ6rTrNCFjhmvlF6ubdRm-5k-zA6veIp9_3cfZ8ezOd3OePT3cPk-vH3EjepNygaW1dj2kb2dqi5TPboG0ElI0tLOczTSb0zOrajEUBum55actWCClMAy3K4-x86EsbLXuMSb35PjgaqcS4Ksk3rwpSiUFlgo8xoFUL8qvDp-KgtgmqIUFFCapdgmpD0MUAfeDM22g6dAZ_QAAooSZtRRVsR9T_V0-6tEtp4nuXCJUDGknuXjH8evhjvS-aJ5ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476157175</pqid></control><display><type>article</type><title>True experimental reconstruction of quantum states and processes via convex optimization</title><source>SpringerNature Journals</source><creator>Gaikwad, Akshay ; Arvind ; Dorai, Kavita</creator><creatorcontrib>Gaikwad, Akshay ; Arvind ; Dorai, Kavita</creatorcontrib><description>We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02930-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Convex analysis ; Convexity ; Data Structures and Information Theory ; Density ; Mathematical analysis ; Mathematical Physics ; Matrix methods ; Microprocessors ; NMR ; Nuclear magnetic resonance ; Operators (mathematics) ; Optimization ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Mathematical ; Physics, Multidisciplinary ; Quantum Computing ; Quantum Information Technology ; Quantum phenomena ; Quantum Physics ; Quantum Science &amp; Technology ; Qubits (quantum computing) ; Science &amp; Technology ; Spintronics ; System dynamics</subject><ispartof>Quantum information processing, 2021, Vol.20 (1), Article 19</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608029700005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</citedby><cites>FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</cites><orcidid>0000-0002-9876-4839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02930-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02930-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gaikwad, Akshay</creatorcontrib><creatorcontrib>Arvind</creatorcontrib><creatorcontrib>Dorai, Kavita</creatorcontrib><title>True experimental reconstruction of quantum states and processes via convex optimization</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><addtitle>QUANTUM INF PROCESS</addtitle><description>We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.</description><subject>Convex analysis</subject><subject>Convexity</subject><subject>Data Structures and Information Theory</subject><subject>Density</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Matrix methods</subject><subject>Microprocessors</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Mathematical</subject><subject>Physics, Multidisciplinary</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Quantum Science &amp; Technology</subject><subject>Qubits (quantum computing)</subject><subject>Science &amp; Technology</subject><subject>Spintronics</subject><subject>System dynamics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhhdRsH78AU8Bj7I6SbpfRyl-geClgreQZieyYpM2ydbaX--0K3oTDyET8j4z875ZdsbhkgNUV5FzLuocBNBpJOSbvWzEi0rmXEqxv6vpqyqKw-woxjcAwcu6HGUv09Ajw_UCQzdHl_Q7C2i8iyn0JnXeMW_Zstcu9XMWk04YmXYtWwRvMEZ6rTrNCFjhmvlF6ubdRm-5k-zA6veIp9_3cfZ8ezOd3OePT3cPk-vH3EjepNygaW1dj2kb2dqi5TPboG0ElI0tLOczTSb0zOrajEUBum55actWCClMAy3K4-x86EsbLXuMSb35PjgaqcS4Ksk3rwpSiUFlgo8xoFUL8qvDp-KgtgmqIUFFCapdgmpD0MUAfeDM22g6dAZ_QAAooSZtRRVsR9T_V0-6tEtp4nuXCJUDGknuXjH8evhjvS-aJ5ds</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Gaikwad, Akshay</creator><creator>Arvind</creator><creator>Dorai, Kavita</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9876-4839</orcidid></search><sort><creationdate>2021</creationdate><title>True experimental reconstruction of quantum states and processes via convex optimization</title><author>Gaikwad, Akshay ; Arvind ; Dorai, Kavita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cecdf8841683df5d1bf9ef92069f5f11ba573abfa8c4250a8d16f6d2232c90de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convex analysis</topic><topic>Convexity</topic><topic>Data Structures and Information Theory</topic><topic>Density</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Matrix methods</topic><topic>Microprocessors</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Mathematical</topic><topic>Physics, Multidisciplinary</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Quantum Science &amp; Technology</topic><topic>Qubits (quantum computing)</topic><topic>Science &amp; Technology</topic><topic>Spintronics</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Akshay</creatorcontrib><creatorcontrib>Arvind</creatorcontrib><creatorcontrib>Dorai, Kavita</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Akshay</au><au>Arvind</au><au>Dorai, Kavita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>True experimental reconstruction of quantum states and processes via convex optimization</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><stitle>QUANTUM INF PROCESS</stitle><date>2021</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><artnum>19</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02930-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9876-4839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2021, Vol.20 (1), Article 19
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2476157175
source SpringerNature Journals
subjects Convex analysis
Convexity
Data Structures and Information Theory
Density
Mathematical analysis
Mathematical Physics
Matrix methods
Microprocessors
NMR
Nuclear magnetic resonance
Operators (mathematics)
Optimization
Physical Sciences
Physics
Physics and Astronomy
Physics, Mathematical
Physics, Multidisciplinary
Quantum Computing
Quantum Information Technology
Quantum phenomena
Quantum Physics
Quantum Science & Technology
Qubits (quantum computing)
Science & Technology
Spintronics
System dynamics
title True experimental reconstruction of quantum states and processes via convex optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=True%20experimental%20reconstruction%20of%20quantum%20states%20and%20processes%20via%20convex%20optimization&rft.jtitle=Quantum%20information%20processing&rft.au=Gaikwad,%20Akshay&rft.date=2021&rft.volume=20&rft.issue=1&rft.artnum=19&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02930-z&rft_dat=%3Cproquest_cross%3E2476157175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476157175&rft_id=info:pmid/&rfr_iscdi=true