Ammonia decomposition for hydrogen production: a thermodynamic study

The need for CO x -free H 2 in proton-exchange membrane fuel cells (PEMFC) has driven ammonia (NH 3 ) decomposition to the forefront of H 2 production technologies, taking NH 3 as a potential and viable hydrogen storage material. Herein, a detailed derivation of thermodynamics governing equations ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2021-01, Vol.75 (1), p.57-65
Hauptverfasser: Ojelade, Opeyemi A., Zaman, Sharif F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 57
container_title Chemical papers
container_volume 75
creator Ojelade, Opeyemi A.
Zaman, Sharif F.
description The need for CO x -free H 2 in proton-exchange membrane fuel cells (PEMFC) has driven ammonia (NH 3 ) decomposition to the forefront of H 2 production technologies, taking NH 3 as a potential and viable hydrogen storage material. Herein, a detailed derivation of thermodynamics governing equations has been applied to analyze the thermodynamics of ammonia decomposition reaction. The study utilizes MATLAB optimization tool ‘fmincon’ to solve the objective function, in a bid to find Gibbs free energy minima. The present study supports that if NH 3 decomposition proceeds without molecular hindrance, almost 100% ammonia conversion, with close to 99.85% H 2 yield, is achievable at 1 bar pressure and ≥ 700 K (427 ℃) temperature but also noticeable that 98% NH 3 conversion is achievable at 600 K (327 ℃). The total free energy of ammonia decomposition system becomes more negative with increasing extent of reaction until equilibrium is reached. As the reaction temperature increases at a pressure of 1 bar, the extent of ammonia decomposition reaction also increases, reaching 0.61, 0.84, 0.91, 0.97 and 0.99 mol at 450, 500, 600, 700, and 773 K, respectively. The conversion of ammonia increases with increasing temperature and a negative effect of pressure was observed as per Le-Chatelier’s principle. Graphical abstract
doi_str_mv 10.1007/s11696-020-01278-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476157010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476157010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-109a0ca720e4bbebc5ff8162cf6ba6902f6be5da9c92f96435f1d12d81b7f7433</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOOj8AVcF19GbpEkad8P4hAE3ug5pHjMV24xJu-j8ejtWcOfqwOGccy8fQlcEbgiAvM2ECCUwUMBAqKzw4QQtCGMCK5D8FC0orziWVME5Wubc1FCWktFKyAW6X7Vt7BpTOG9ju4-56ZvYFSGmYje6FLe-K_YpusEe_bvCFP3Opza6sTNtY4vcD268RGfBfGa__NUL9P748LZ-xpvXp5f1aoMt46LHBJQBayQFX9a1ry0PoSKC2iBqIxTQST13RllFgxIl44E4Ql1FahlkydgFup53p4--Bp97_RGH1E0nNS2lIFwCgSlF55RNMefkg96npjVp1AT0EZiegekJmP4Bpg9Tic2lPIW7rU9_0_-0vgHPvG93</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476157010</pqid></control><display><type>article</type><title>Ammonia decomposition for hydrogen production: a thermodynamic study</title><source>SpringerLink Journals</source><creator>Ojelade, Opeyemi A. ; Zaman, Sharif F.</creator><creatorcontrib>Ojelade, Opeyemi A. ; Zaman, Sharif F.</creatorcontrib><description>The need for CO x -free H 2 in proton-exchange membrane fuel cells (PEMFC) has driven ammonia (NH 3 ) decomposition to the forefront of H 2 production technologies, taking NH 3 as a potential and viable hydrogen storage material. Herein, a detailed derivation of thermodynamics governing equations has been applied to analyze the thermodynamics of ammonia decomposition reaction. The study utilizes MATLAB optimization tool ‘fmincon’ to solve the objective function, in a bid to find Gibbs free energy minima. The present study supports that if NH 3 decomposition proceeds without molecular hindrance, almost 100% ammonia conversion, with close to 99.85% H 2 yield, is achievable at 1 bar pressure and ≥ 700 K (427 ℃) temperature but also noticeable that 98% NH 3 conversion is achievable at 600 K (327 ℃). The total free energy of ammonia decomposition system becomes more negative with increasing extent of reaction until equilibrium is reached. As the reaction temperature increases at a pressure of 1 bar, the extent of ammonia decomposition reaction also increases, reaching 0.61, 0.84, 0.91, 0.97 and 0.99 mol at 450, 500, 600, 700, and 773 K, respectively. The conversion of ammonia increases with increasing temperature and a negative effect of pressure was observed as per Le-Chatelier’s principle. Graphical abstract</description><identifier>ISSN: 2585-7290</identifier><identifier>ISSN: 0366-6352</identifier><identifier>EISSN: 1336-9075</identifier><identifier>DOI: 10.1007/s11696-020-01278-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ammonia ; Biochemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Conversion ; Decomposition ; Decomposition reactions ; Gibbs free energy ; Hydrogen production ; Hydrogen storage materials ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Medicinal Chemistry ; Optimization ; Original Paper ; Pressure effects ; Proton exchange membrane fuel cells ; Thermodynamics</subject><ispartof>Chemical papers, 2021-01, Vol.75 (1), p.57-65</ispartof><rights>Institute of Chemistry, Slovak Academy of Sciences 2020</rights><rights>Institute of Chemistry, Slovak Academy of Sciences 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-109a0ca720e4bbebc5ff8162cf6ba6902f6be5da9c92f96435f1d12d81b7f7433</citedby><cites>FETCH-LOGICAL-c356t-109a0ca720e4bbebc5ff8162cf6ba6902f6be5da9c92f96435f1d12d81b7f7433</cites><orcidid>0000-0002-3600-2601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11696-020-01278-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11696-020-01278-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ojelade, Opeyemi A.</creatorcontrib><creatorcontrib>Zaman, Sharif F.</creatorcontrib><title>Ammonia decomposition for hydrogen production: a thermodynamic study</title><title>Chemical papers</title><addtitle>Chem. Pap</addtitle><description>The need for CO x -free H 2 in proton-exchange membrane fuel cells (PEMFC) has driven ammonia (NH 3 ) decomposition to the forefront of H 2 production technologies, taking NH 3 as a potential and viable hydrogen storage material. Herein, a detailed derivation of thermodynamics governing equations has been applied to analyze the thermodynamics of ammonia decomposition reaction. The study utilizes MATLAB optimization tool ‘fmincon’ to solve the objective function, in a bid to find Gibbs free energy minima. The present study supports that if NH 3 decomposition proceeds without molecular hindrance, almost 100% ammonia conversion, with close to 99.85% H 2 yield, is achievable at 1 bar pressure and ≥ 700 K (427 ℃) temperature but also noticeable that 98% NH 3 conversion is achievable at 600 K (327 ℃). The total free energy of ammonia decomposition system becomes more negative with increasing extent of reaction until equilibrium is reached. As the reaction temperature increases at a pressure of 1 bar, the extent of ammonia decomposition reaction also increases, reaching 0.61, 0.84, 0.91, 0.97 and 0.99 mol at 450, 500, 600, 700, and 773 K, respectively. The conversion of ammonia increases with increasing temperature and a negative effect of pressure was observed as per Le-Chatelier’s principle. Graphical abstract</description><subject>Ammonia</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Conversion</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Gibbs free energy</subject><subject>Hydrogen production</subject><subject>Hydrogen storage materials</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Medicinal Chemistry</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Pressure effects</subject><subject>Proton exchange membrane fuel cells</subject><subject>Thermodynamics</subject><issn>2585-7290</issn><issn>0366-6352</issn><issn>1336-9075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOOj8AVcF19GbpEkad8P4hAE3ug5pHjMV24xJu-j8ejtWcOfqwOGccy8fQlcEbgiAvM2ECCUwUMBAqKzw4QQtCGMCK5D8FC0orziWVME5Wubc1FCWktFKyAW6X7Vt7BpTOG9ju4-56ZvYFSGmYje6FLe-K_YpusEe_bvCFP3Opza6sTNtY4vcD268RGfBfGa__NUL9P748LZ-xpvXp5f1aoMt46LHBJQBayQFX9a1ry0PoSKC2iBqIxTQST13RllFgxIl44E4Ql1FahlkydgFup53p4--Bp97_RGH1E0nNS2lIFwCgSlF55RNMefkg96npjVp1AT0EZiegekJmP4Bpg9Tic2lPIW7rU9_0_-0vgHPvG93</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ojelade, Opeyemi A.</creator><creator>Zaman, Sharif F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3600-2601</orcidid></search><sort><creationdate>20210101</creationdate><title>Ammonia decomposition for hydrogen production: a thermodynamic study</title><author>Ojelade, Opeyemi A. ; Zaman, Sharif F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-109a0ca720e4bbebc5ff8162cf6ba6902f6be5da9c92f96435f1d12d81b7f7433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Conversion</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Gibbs free energy</topic><topic>Hydrogen production</topic><topic>Hydrogen storage materials</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Medicinal Chemistry</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Pressure effects</topic><topic>Proton exchange membrane fuel cells</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ojelade, Opeyemi A.</creatorcontrib><creatorcontrib>Zaman, Sharif F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ojelade, Opeyemi A.</au><au>Zaman, Sharif F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia decomposition for hydrogen production: a thermodynamic study</atitle><jtitle>Chemical papers</jtitle><stitle>Chem. Pap</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>75</volume><issue>1</issue><spage>57</spage><epage>65</epage><pages>57-65</pages><issn>2585-7290</issn><issn>0366-6352</issn><eissn>1336-9075</eissn><abstract>The need for CO x -free H 2 in proton-exchange membrane fuel cells (PEMFC) has driven ammonia (NH 3 ) decomposition to the forefront of H 2 production technologies, taking NH 3 as a potential and viable hydrogen storage material. Herein, a detailed derivation of thermodynamics governing equations has been applied to analyze the thermodynamics of ammonia decomposition reaction. The study utilizes MATLAB optimization tool ‘fmincon’ to solve the objective function, in a bid to find Gibbs free energy minima. The present study supports that if NH 3 decomposition proceeds without molecular hindrance, almost 100% ammonia conversion, with close to 99.85% H 2 yield, is achievable at 1 bar pressure and ≥ 700 K (427 ℃) temperature but also noticeable that 98% NH 3 conversion is achievable at 600 K (327 ℃). The total free energy of ammonia decomposition system becomes more negative with increasing extent of reaction until equilibrium is reached. As the reaction temperature increases at a pressure of 1 bar, the extent of ammonia decomposition reaction also increases, reaching 0.61, 0.84, 0.91, 0.97 and 0.99 mol at 450, 500, 600, 700, and 773 K, respectively. The conversion of ammonia increases with increasing temperature and a negative effect of pressure was observed as per Le-Chatelier’s principle. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11696-020-01278-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3600-2601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2585-7290
ispartof Chemical papers, 2021-01, Vol.75 (1), p.57-65
issn 2585-7290
0366-6352
1336-9075
language eng
recordid cdi_proquest_journals_2476157010
source SpringerLink Journals
subjects Ammonia
Biochemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Conversion
Decomposition
Decomposition reactions
Gibbs free energy
Hydrogen production
Hydrogen storage materials
Industrial Chemistry/Chemical Engineering
Materials Science
Medicinal Chemistry
Optimization
Original Paper
Pressure effects
Proton exchange membrane fuel cells
Thermodynamics
title Ammonia decomposition for hydrogen production: a thermodynamic study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20decomposition%20for%20hydrogen%20production:%20a%20thermodynamic%20study&rft.jtitle=Chemical%20papers&rft.au=Ojelade,%20Opeyemi%20A.&rft.date=2021-01-01&rft.volume=75&rft.issue=1&rft.spage=57&rft.epage=65&rft.pages=57-65&rft.issn=2585-7290&rft.eissn=1336-9075&rft_id=info:doi/10.1007/s11696-020-01278-z&rft_dat=%3Cproquest_cross%3E2476157010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476157010&rft_id=info:pmid/&rfr_iscdi=true