Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection

Summary Stochastic gradient Markov chain Monte Carlo algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2020-12, Vol.107 (4), p.997-1004
Hauptverfasser: Song, Qifan, Sun, Yan, Ye, Mao, Liang, Faming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 4
container_start_page 997
container_title Biometrika
container_volume 107
creator Song, Qifan
Sun, Yan
Ye, Mao
Liang, Faming
description Summary Stochastic gradient Markov chain Monte Carlo algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient Markov chain Monte Carlo algorithm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional Markov chain Monte Carlo algorithms.
doi_str_mv 10.1093/biomet/asaa029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2476152060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa029</oup_id><sourcerecordid>2476152060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-562fd41e3fb7f0a62ae78d3925b9450f27ab104db6225e0ef51fec9e3ce42f153</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiYkhrO7ZDRqjKh9SKBebo4pyLSxoX263ovydVujOd7tXz3kkPIbecTTgr82nt_AbTFCIAE-UZGXGpZZYrzs7JiDGms1xKeUmuYlwfV630iMD8N2HXYENj8uYLYnKGrgI0DrtElxC-_Z72uevo0ncJ6QxC66n1gbYQVphFAy3SJzhgdNDRPQQHdZ9EbNEk57trcmGhjXhzmmPy-Tz_mL1mi_eXt9njIjOi4ClTWthGcsxtXVgGWgAWD01eClWXUjErCqg5k02thVDI0Cpu0ZSYG5TCcpWPyd1wdxv8zw5jqtZ-F7r-ZSVkobkSTLOemgyUCT7GgLbaBreBcKg4q44aq0FjddLYF-6Hgt9t_2P_ANjhd3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476152060</pqid></control><display><type>article</type><title>Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Song, Qifan ; Sun, Yan ; Ye, Mao ; Liang, Faming</creator><creatorcontrib>Song, Qifan ; Sun, Yan ; Ye, Mao ; Liang, Faming</creatorcontrib><description>Summary Stochastic gradient Markov chain Monte Carlo algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient Markov chain Monte Carlo algorithm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional Markov chain Monte Carlo algorithms.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa029</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Bayesian analysis ; Computation ; Markov analysis ; Markov chains ; Missing data ; Parameters ; Railroad transportation</subject><ispartof>Biometrika, 2020-12, Vol.107 (4), p.997-1004</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-562fd41e3fb7f0a62ae78d3925b9450f27ab104db6225e0ef51fec9e3ce42f153</citedby><cites>FETCH-LOGICAL-c271t-562fd41e3fb7f0a62ae78d3925b9450f27ab104db6225e0ef51fec9e3ce42f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Song, Qifan</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Liang, Faming</creatorcontrib><title>Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection</title><title>Biometrika</title><description>Summary Stochastic gradient Markov chain Monte Carlo algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient Markov chain Monte Carlo algorithm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional Markov chain Monte Carlo algorithms.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Missing data</subject><subject>Parameters</subject><subject>Railroad transportation</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiYkhrO7ZDRqjKh9SKBebo4pyLSxoX263ovydVujOd7tXz3kkPIbecTTgr82nt_AbTFCIAE-UZGXGpZZYrzs7JiDGms1xKeUmuYlwfV630iMD8N2HXYENj8uYLYnKGrgI0DrtElxC-_Z72uevo0ncJ6QxC66n1gbYQVphFAy3SJzhgdNDRPQQHdZ9EbNEk57trcmGhjXhzmmPy-Tz_mL1mi_eXt9njIjOi4ClTWthGcsxtXVgGWgAWD01eClWXUjErCqg5k02thVDI0Cpu0ZSYG5TCcpWPyd1wdxv8zw5jqtZ-F7r-ZSVkobkSTLOemgyUCT7GgLbaBreBcKg4q44aq0FjddLYF-6Hgt9t_2P_ANjhd3Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Song, Qifan</creator><creator>Sun, Yan</creator><creator>Ye, Mao</creator><creator>Liang, Faming</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20201201</creationdate><title>Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection</title><author>Song, Qifan ; Sun, Yan ; Ye, Mao ; Liang, Faming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-562fd41e3fb7f0a62ae78d3925b9450f27ab104db6225e0ef51fec9e3ce42f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Missing data</topic><topic>Parameters</topic><topic>Railroad transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Qifan</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Liang, Faming</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Qifan</au><au>Sun, Yan</au><au>Ye, Mao</au><au>Liang, Faming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection</atitle><jtitle>Biometrika</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>107</volume><issue>4</issue><spage>997</spage><epage>1004</epage><pages>997-1004</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary Stochastic gradient Markov chain Monte Carlo algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient Markov chain Monte Carlo algorithm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional Markov chain Monte Carlo algorithms.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asaa029</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2020-12, Vol.107 (4), p.997-1004
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_2476152060
source Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Bayesian analysis
Computation
Markov analysis
Markov chains
Missing data
Parameters
Railroad transportation
title Extended stochastic gradient Markov chain Monte Carlo for large-scale Bayesian variable selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20stochastic%20gradient%20Markov%20chain%20Monte%20Carlo%20for%20large-scale%20Bayesian%20variable%20selection&rft.jtitle=Biometrika&rft.au=Song,%20Qifan&rft.date=2020-12-01&rft.volume=107&rft.issue=4&rft.spage=997&rft.epage=1004&rft.pages=997-1004&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa029&rft_dat=%3Cproquest_cross%3E2476152060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476152060&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asaa029&rfr_iscdi=true