Local sea level trends, accelerations and uncertainties over 1993–2019
Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science ques...
Gespeichert in:
Veröffentlicht in: | Scientific data 2021-01, Vol.8 (1), p.1-1, Article 1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific data |
container_volume | 8 |
creator | Prandi, Pierre Meyssignac, Benoit Ablain, Michaël Spada, Giorgio Ribes, Aurélien Benveniste, Jérôme |
description | Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science questions. While uncertainty estimates are available for the global mean sea level (GMSL), information is not available at local scales so far. We estimate a local satellite altimetry error budget and use it to derive local error variance-covariance matrices, and estimate confidence intervals on trends and accelerations at the 90% confidence level. Over 1993–2019, we find that the average local sea level trend uncertainty is 0.83
mm
.
yr
−1
with values ranging from 0.78 to 1.22
mm
.
yr
−1
. For accelerations, uncertainties range from 0.057 to 0.12
mm
.
yr
−1
, with a mean value of 0.062. We also perform a sensitivity study to investigate a range of plausible error budgets. Local error levels, error variance-covariance matrices, SL trends and accelerations, along with corresponding uncertainties are provided.
Measurement(s)
sea surface height
Technology Type(s)
satellite radar altimetry
Factor Type(s)
year of data collection
Sample Characteristic - Environment
sea • ocean
Sample Characteristic - Location
global
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13297757 |
doi_str_mv | 10.1038/s41597-020-00786-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2476042834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a3ce73e5bf1b464784ad064fb1dc7bed</doaj_id><sourcerecordid>2476042834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-11e39716512299d9dabf912bdfcf83a3965bcbbc4038b2f2b3c294520db168133</originalsourceid><addsrcrecordid>eNp9kktuFDEQhlsIRKKQC7BALbEBiQ4uP9rtDVIUARNpJDawtvyonvSoxw52z0jZcQduyEnwTIe8FqxsVX31l6v8V9VrIGdAWPcxcxBKNoSShhDZtY18Vh1TImjDecueP7gfVac5rwkhwDgRkrysjhjjwDnrjqvFMjoz1hlNPeIOx3pKGHz-UBvncMRkpiGGXJvg621wmCYzhGnAXMcdphqUYn9-_aYE1KvqRW_GjKe350n148vn7xeLZvnt6-XF-bJxQvKpAUCmJLQCKFXKK29sr4Ba37u-Y4apVlhnreNlRkt7apmjigtKvIW2A8ZOqstZ10ez1tdp2Jh0o6MZ9CEQ00qbNA1uRG2YQ8lQ2B4sb7nsuPGk5b0F76RFX7Q-zVrXW7tB7zBMyYyPRB9nwnClV3GnpVQAVBSB97PA1ZOyxflS72OEcdVJInZQ2He3zVL8ucU86c2Qy45HEzBus6ZctkJ05WMK-vYJuo7bFMpaDxThtGN7is6USzHnhP3dC4DovUf07BFdPKIPHtGyFL15OPJdyT9HFIDNQC6psMJ03_s_sn8BDnLFYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476042834</pqid></control><display><type>article</type><title>Local sea level trends, accelerations and uncertainties over 1993–2019</title><source>Springer Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Prandi, Pierre ; Meyssignac, Benoit ; Ablain, Michaël ; Spada, Giorgio ; Ribes, Aurélien ; Benveniste, Jérôme</creator><creatorcontrib>Prandi, Pierre ; Meyssignac, Benoit ; Ablain, Michaël ; Spada, Giorgio ; Ribes, Aurélien ; Benveniste, Jérôme</creatorcontrib><description>Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science questions. While uncertainty estimates are available for the global mean sea level (GMSL), information is not available at local scales so far. We estimate a local satellite altimetry error budget and use it to derive local error variance-covariance matrices, and estimate confidence intervals on trends and accelerations at the 90% confidence level. Over 1993–2019, we find that the average local sea level trend uncertainty is 0.83
mm
.
yr
−1
with values ranging from 0.78 to 1.22
mm
.
yr
−1
. For accelerations, uncertainties range from 0.057 to 0.12
mm
.
yr
−1
, with a mean value of 0.062. We also perform a sensitivity study to investigate a range of plausible error budgets. Local error levels, error variance-covariance matrices, SL trends and accelerations, along with corresponding uncertainties are provided.
Measurement(s)
sea surface height
Technology Type(s)
satellite radar altimetry
Factor Type(s)
year of data collection
Sample Characteristic - Environment
sea • ocean
Sample Characteristic - Location
global
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13297757</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-020-00786-7</identifier><identifier>PMID: 33414438</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/694/2739 ; 704/106/829/2737 ; 704/4111 ; Data collection ; Data Descriptor ; Humanities and Social Sciences ; multidisciplinary ; Ocean, Atmosphere ; Science ; Science (multidisciplinary) ; Sciences of the Universe ; Sea level ; Trends</subject><ispartof>Scientific data, 2021-01, Vol.8 (1), p.1-1, Article 1</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-11e39716512299d9dabf912bdfcf83a3965bcbbc4038b2f2b3c294520db168133</citedby><cites>FETCH-LOGICAL-c574t-11e39716512299d9dabf912bdfcf83a3965bcbbc4038b2f2b3c294520db168133</cites><orcidid>0000-0001-6325-9843 ; 0000-0001-8224-0486 ; 0000-0001-5102-7885 ; 0000-0002-1398-8498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791125/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791125/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33414438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03498705$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prandi, Pierre</creatorcontrib><creatorcontrib>Meyssignac, Benoit</creatorcontrib><creatorcontrib>Ablain, Michaël</creatorcontrib><creatorcontrib>Spada, Giorgio</creatorcontrib><creatorcontrib>Ribes, Aurélien</creatorcontrib><creatorcontrib>Benveniste, Jérôme</creatorcontrib><title>Local sea level trends, accelerations and uncertainties over 1993–2019</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science questions. While uncertainty estimates are available for the global mean sea level (GMSL), information is not available at local scales so far. We estimate a local satellite altimetry error budget and use it to derive local error variance-covariance matrices, and estimate confidence intervals on trends and accelerations at the 90% confidence level. Over 1993–2019, we find that the average local sea level trend uncertainty is 0.83
mm
.
yr
−1
with values ranging from 0.78 to 1.22
mm
.
yr
−1
. For accelerations, uncertainties range from 0.057 to 0.12
mm
.
yr
−1
, with a mean value of 0.062. We also perform a sensitivity study to investigate a range of plausible error budgets. Local error levels, error variance-covariance matrices, SL trends and accelerations, along with corresponding uncertainties are provided.
Measurement(s)
sea surface height
Technology Type(s)
satellite radar altimetry
Factor Type(s)
year of data collection
Sample Characteristic - Environment
sea • ocean
Sample Characteristic - Location
global
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13297757</description><subject>704/106/694/2739</subject><subject>704/106/829/2737</subject><subject>704/4111</subject><subject>Data collection</subject><subject>Data Descriptor</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Ocean, Atmosphere</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sciences of the Universe</subject><subject>Sea level</subject><subject>Trends</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktuFDEQhlsIRKKQC7BALbEBiQ4uP9rtDVIUARNpJDawtvyonvSoxw52z0jZcQduyEnwTIe8FqxsVX31l6v8V9VrIGdAWPcxcxBKNoSShhDZtY18Vh1TImjDecueP7gfVac5rwkhwDgRkrysjhjjwDnrjqvFMjoz1hlNPeIOx3pKGHz-UBvncMRkpiGGXJvg621wmCYzhGnAXMcdphqUYn9-_aYE1KvqRW_GjKe350n148vn7xeLZvnt6-XF-bJxQvKpAUCmJLQCKFXKK29sr4Ba37u-Y4apVlhnreNlRkt7apmjigtKvIW2A8ZOqstZ10ez1tdp2Jh0o6MZ9CEQ00qbNA1uRG2YQ8lQ2B4sb7nsuPGk5b0F76RFX7Q-zVrXW7tB7zBMyYyPRB9nwnClV3GnpVQAVBSB97PA1ZOyxflS72OEcdVJInZQ2He3zVL8ucU86c2Qy45HEzBus6ZctkJ05WMK-vYJuo7bFMpaDxThtGN7is6USzHnhP3dC4DovUf07BFdPKIPHtGyFL15OPJdyT9HFIDNQC6psMJ03_s_sn8BDnLFYw</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Prandi, Pierre</creator><creator>Meyssignac, Benoit</creator><creator>Ablain, Michaël</creator><creator>Spada, Giorgio</creator><creator>Ribes, Aurélien</creator><creator>Benveniste, Jérôme</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6325-9843</orcidid><orcidid>https://orcid.org/0000-0001-8224-0486</orcidid><orcidid>https://orcid.org/0000-0001-5102-7885</orcidid><orcidid>https://orcid.org/0000-0002-1398-8498</orcidid></search><sort><creationdate>20210107</creationdate><title>Local sea level trends, accelerations and uncertainties over 1993–2019</title><author>Prandi, Pierre ; Meyssignac, Benoit ; Ablain, Michaël ; Spada, Giorgio ; Ribes, Aurélien ; Benveniste, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-11e39716512299d9dabf912bdfcf83a3965bcbbc4038b2f2b3c294520db168133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106/694/2739</topic><topic>704/106/829/2737</topic><topic>704/4111</topic><topic>Data collection</topic><topic>Data Descriptor</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Ocean, Atmosphere</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sciences of the Universe</topic><topic>Sea level</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prandi, Pierre</creatorcontrib><creatorcontrib>Meyssignac, Benoit</creatorcontrib><creatorcontrib>Ablain, Michaël</creatorcontrib><creatorcontrib>Spada, Giorgio</creatorcontrib><creatorcontrib>Ribes, Aurélien</creatorcontrib><creatorcontrib>Benveniste, Jérôme</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prandi, Pierre</au><au>Meyssignac, Benoit</au><au>Ablain, Michaël</au><au>Spada, Giorgio</au><au>Ribes, Aurélien</au><au>Benveniste, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local sea level trends, accelerations and uncertainties over 1993–2019</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2021-01-07</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science questions. While uncertainty estimates are available for the global mean sea level (GMSL), information is not available at local scales so far. We estimate a local satellite altimetry error budget and use it to derive local error variance-covariance matrices, and estimate confidence intervals on trends and accelerations at the 90% confidence level. Over 1993–2019, we find that the average local sea level trend uncertainty is 0.83
mm
.
yr
−1
with values ranging from 0.78 to 1.22
mm
.
yr
−1
. For accelerations, uncertainties range from 0.057 to 0.12
mm
.
yr
−1
, with a mean value of 0.062. We also perform a sensitivity study to investigate a range of plausible error budgets. Local error levels, error variance-covariance matrices, SL trends and accelerations, along with corresponding uncertainties are provided.
Measurement(s)
sea surface height
Technology Type(s)
satellite radar altimetry
Factor Type(s)
year of data collection
Sample Characteristic - Environment
sea • ocean
Sample Characteristic - Location
global
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13297757</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33414438</pmid><doi>10.1038/s41597-020-00786-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6325-9843</orcidid><orcidid>https://orcid.org/0000-0001-8224-0486</orcidid><orcidid>https://orcid.org/0000-0001-5102-7885</orcidid><orcidid>https://orcid.org/0000-0002-1398-8498</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2021-01, Vol.8 (1), p.1-1, Article 1 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_proquest_journals_2476042834 |
source | Springer Open Access; DOAJ Directory of Open Access Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | 704/106/694/2739 704/106/829/2737 704/4111 Data collection Data Descriptor Humanities and Social Sciences multidisciplinary Ocean, Atmosphere Science Science (multidisciplinary) Sciences of the Universe Sea level Trends |
title | Local sea level trends, accelerations and uncertainties over 1993–2019 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20sea%20level%20trends,%20accelerations%20and%20uncertainties%20over%201993%E2%80%932019&rft.jtitle=Scientific%20data&rft.au=Prandi,%20Pierre&rft.date=2021-01-07&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-020-00786-7&rft_dat=%3Cproquest_doaj_%3E2476042834%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476042834&rft_id=info:pmid/33414438&rft_doaj_id=oai_doaj_org_article_a3ce73e5bf1b464784ad064fb1dc7bed&rfr_iscdi=true |