Multiple Object Tracking Using Edge Multi-Channel Gradient Model With ORB Feature

Multiple object tracking based on tracking-by-detection is the most common method used in addressing illumination change and occlusion problems. In this paper, we present a tracking algorithm based on Edge Multi-channel Gradient Model. We first use the canny operator to extract the edges of the imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.2294-2309
Hauptverfasser: Chen, Jieyu, Xi, Zhenghao, Wei, Chi, Lu, Junxin, Niu, Yuhui, Li, Zhongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2309
container_issue
container_start_page 2294
container_title IEEE access
container_volume 9
creator Chen, Jieyu
Xi, Zhenghao
Wei, Chi
Lu, Junxin
Niu, Yuhui
Li, Zhongfeng
description Multiple object tracking based on tracking-by-detection is the most common method used in addressing illumination change and occlusion problems. In this paper, we present a tracking algorithm based on Edge Multi-channel Gradient Model. We first use the canny operator to extract the edges of the image, and establish a biologically inspired Multi-channel Gradient Model that integrate the spatio-temporal-spectral information of the edge to detect moving multiple objects. Under this model, the ORB feature is introduced to solve the problem of matching the object with the object library. Therefore, we can achieve object consistency, and the threshold classification method can solve the problem of multiple object occlusion in the process of persistent multiple object tracking. The experimental results show that the proposed method can effectively deal with the problems of occlusion and illumination changes. Compared with other state-of-the-art algorithms, the proposed algorithm achieves better performance on MOTA, MOTP, and IDF1. In particular, it performs best on IDSW on MOT2015 dataset, with an average improvement ratio of 28.99% over the second-place algorithm. In addition, our algorithm has a better performance in running time, achieving a good compromise between the speed and the accuracy.
doi_str_mv 10.1109/ACCESS.2020.3046763
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2475960045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9305221</ieee_id><doaj_id>oai_doaj_org_article_436a7b15359b410ba0399f89a96fd744</doaj_id><sourcerecordid>2475960045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-57cd6c023afcacecc48dbe44d20fc02041a88525b029d9e4f30504932e39deeb3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOgX9BKJc8r6lcRHiApUalVBQRwtx960CSEpTnLg73GbCrEH73o0M2trgmBKYEYIyLv7LJtvNjMKFGYMeJzE7Cy4oiSWERMsPv83XwaTrqvAV-ohkVwFL6uh7st9jeE6r9D04ZvT5rNstuF7dzjndovhkRNlO900WIdPTtsSmz5ctdZfP8p-F65fH8JH1P3g8Ca4KHTd4eTUr4P3x_lb9hwt10-L7H4ZGQ5pH4nE2NgAZbow2qAxPLU5cm4pFB4GTnSaCipyoNJK5AUDAVwyikxaxJxdB4vR17a6UntXfmn3o1pdqiPQuq3Sri9NjYqzWCc5EUzInBPINTApi1RqGRc24dx73Y5ee9d-D9j1qmoH1_jnK8oTIWMALjyLjSzj2q5zWPxtJaAOUagxCnWIQp2i8KrpqCoR8U8h_XcoJewXeZ2CzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475960045</pqid></control><display><type>article</type><title>Multiple Object Tracking Using Edge Multi-Channel Gradient Model With ORB Feature</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Jieyu ; Xi, Zhenghao ; Wei, Chi ; Lu, Junxin ; Niu, Yuhui ; Li, Zhongfeng</creator><creatorcontrib>Chen, Jieyu ; Xi, Zhenghao ; Wei, Chi ; Lu, Junxin ; Niu, Yuhui ; Li, Zhongfeng</creatorcontrib><description>Multiple object tracking based on tracking-by-detection is the most common method used in addressing illumination change and occlusion problems. In this paper, we present a tracking algorithm based on Edge Multi-channel Gradient Model. We first use the canny operator to extract the edges of the image, and establish a biologically inspired Multi-channel Gradient Model that integrate the spatio-temporal-spectral information of the edge to detect moving multiple objects. Under this model, the ORB feature is introduced to solve the problem of matching the object with the object library. Therefore, we can achieve object consistency, and the threshold classification method can solve the problem of multiple object occlusion in the process of persistent multiple object tracking. The experimental results show that the proposed method can effectively deal with the problems of occlusion and illumination changes. Compared with other state-of-the-art algorithms, the proposed algorithm achieves better performance on MOTA, MOTP, and IDF1. In particular, it performs best on IDSW on MOT2015 dataset, with an average improvement ratio of 28.99% over the second-place algorithm. In addition, our algorithm has a better performance in running time, achieving a good compromise between the speed and the accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3046763</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Deep learning ; E-McGM ; Feature extraction ; Illumination ; Image color analysis ; Image edge detection ; Moving object recognition ; multiple object detection ; Multiple object tracking ; Multiple target tracking ; Object detection ; Occlusion ; ORB ; tracking by detection ; Trajectory</subject><ispartof>IEEE access, 2021, Vol.9, p.2294-2309</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-57cd6c023afcacecc48dbe44d20fc02041a88525b029d9e4f30504932e39deeb3</citedby><cites>FETCH-LOGICAL-c408t-57cd6c023afcacecc48dbe44d20fc02041a88525b029d9e4f30504932e39deeb3</cites><orcidid>0000-0002-8144-3123 ; 0000-0002-6110-4802 ; 0000-0002-7224-8756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9305221$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Chen, Jieyu</creatorcontrib><creatorcontrib>Xi, Zhenghao</creatorcontrib><creatorcontrib>Wei, Chi</creatorcontrib><creatorcontrib>Lu, Junxin</creatorcontrib><creatorcontrib>Niu, Yuhui</creatorcontrib><creatorcontrib>Li, Zhongfeng</creatorcontrib><title>Multiple Object Tracking Using Edge Multi-Channel Gradient Model With ORB Feature</title><title>IEEE access</title><addtitle>Access</addtitle><description>Multiple object tracking based on tracking-by-detection is the most common method used in addressing illumination change and occlusion problems. In this paper, we present a tracking algorithm based on Edge Multi-channel Gradient Model. We first use the canny operator to extract the edges of the image, and establish a biologically inspired Multi-channel Gradient Model that integrate the spatio-temporal-spectral information of the edge to detect moving multiple objects. Under this model, the ORB feature is introduced to solve the problem of matching the object with the object library. Therefore, we can achieve object consistency, and the threshold classification method can solve the problem of multiple object occlusion in the process of persistent multiple object tracking. The experimental results show that the proposed method can effectively deal with the problems of occlusion and illumination changes. Compared with other state-of-the-art algorithms, the proposed algorithm achieves better performance on MOTA, MOTP, and IDF1. In particular, it performs best on IDSW on MOT2015 dataset, with an average improvement ratio of 28.99% over the second-place algorithm. In addition, our algorithm has a better performance in running time, achieving a good compromise between the speed and the accuracy.</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>E-McGM</subject><subject>Feature extraction</subject><subject>Illumination</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Moving object recognition</subject><subject>multiple object detection</subject><subject>Multiple object tracking</subject><subject>Multiple target tracking</subject><subject>Object detection</subject><subject>Occlusion</subject><subject>ORB</subject><subject>tracking by detection</subject><subject>Trajectory</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOgX9BKJc8r6lcRHiApUalVBQRwtx960CSEpTnLg73GbCrEH73o0M2trgmBKYEYIyLv7LJtvNjMKFGYMeJzE7Cy4oiSWERMsPv83XwaTrqvAV-ohkVwFL6uh7st9jeE6r9D04ZvT5rNstuF7dzjndovhkRNlO900WIdPTtsSmz5ctdZfP8p-F65fH8JH1P3g8Ca4KHTd4eTUr4P3x_lb9hwt10-L7H4ZGQ5pH4nE2NgAZbow2qAxPLU5cm4pFB4GTnSaCipyoNJK5AUDAVwyikxaxJxdB4vR17a6UntXfmn3o1pdqiPQuq3Sri9NjYqzWCc5EUzInBPINTApi1RqGRc24dx73Y5ee9d-D9j1qmoH1_jnK8oTIWMALjyLjSzj2q5zWPxtJaAOUagxCnWIQp2i8KrpqCoR8U8h_XcoJewXeZ2CzQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Jieyu</creator><creator>Xi, Zhenghao</creator><creator>Wei, Chi</creator><creator>Lu, Junxin</creator><creator>Niu, Yuhui</creator><creator>Li, Zhongfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8144-3123</orcidid><orcidid>https://orcid.org/0000-0002-6110-4802</orcidid><orcidid>https://orcid.org/0000-0002-7224-8756</orcidid></search><sort><creationdate>2021</creationdate><title>Multiple Object Tracking Using Edge Multi-Channel Gradient Model With ORB Feature</title><author>Chen, Jieyu ; Xi, Zhenghao ; Wei, Chi ; Lu, Junxin ; Niu, Yuhui ; Li, Zhongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-57cd6c023afcacecc48dbe44d20fc02041a88525b029d9e4f30504932e39deeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>E-McGM</topic><topic>Feature extraction</topic><topic>Illumination</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Moving object recognition</topic><topic>multiple object detection</topic><topic>Multiple object tracking</topic><topic>Multiple target tracking</topic><topic>Object detection</topic><topic>Occlusion</topic><topic>ORB</topic><topic>tracking by detection</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jieyu</creatorcontrib><creatorcontrib>Xi, Zhenghao</creatorcontrib><creatorcontrib>Wei, Chi</creatorcontrib><creatorcontrib>Lu, Junxin</creatorcontrib><creatorcontrib>Niu, Yuhui</creatorcontrib><creatorcontrib>Li, Zhongfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jieyu</au><au>Xi, Zhenghao</au><au>Wei, Chi</au><au>Lu, Junxin</au><au>Niu, Yuhui</au><au>Li, Zhongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Object Tracking Using Edge Multi-Channel Gradient Model With ORB Feature</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>2294</spage><epage>2309</epage><pages>2294-2309</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Multiple object tracking based on tracking-by-detection is the most common method used in addressing illumination change and occlusion problems. In this paper, we present a tracking algorithm based on Edge Multi-channel Gradient Model. We first use the canny operator to extract the edges of the image, and establish a biologically inspired Multi-channel Gradient Model that integrate the spatio-temporal-spectral information of the edge to detect moving multiple objects. Under this model, the ORB feature is introduced to solve the problem of matching the object with the object library. Therefore, we can achieve object consistency, and the threshold classification method can solve the problem of multiple object occlusion in the process of persistent multiple object tracking. The experimental results show that the proposed method can effectively deal with the problems of occlusion and illumination changes. Compared with other state-of-the-art algorithms, the proposed algorithm achieves better performance on MOTA, MOTP, and IDF1. In particular, it performs best on IDSW on MOT2015 dataset, with an average improvement ratio of 28.99% over the second-place algorithm. In addition, our algorithm has a better performance in running time, achieving a good compromise between the speed and the accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3046763</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8144-3123</orcidid><orcidid>https://orcid.org/0000-0002-6110-4802</orcidid><orcidid>https://orcid.org/0000-0002-7224-8756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.2294-2309
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2475960045
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Biological system modeling
Deep learning
E-McGM
Feature extraction
Illumination
Image color analysis
Image edge detection
Moving object recognition
multiple object detection
Multiple object tracking
Multiple target tracking
Object detection
Occlusion
ORB
tracking by detection
Trajectory
title Multiple Object Tracking Using Edge Multi-Channel Gradient Model With ORB Feature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Object%20Tracking%20Using%20Edge%20Multi-Channel%20Gradient%20Model%20With%20ORB%20Feature&rft.jtitle=IEEE%20access&rft.au=Chen,%20Jieyu&rft.date=2021&rft.volume=9&rft.spage=2294&rft.epage=2309&rft.pages=2294-2309&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3046763&rft_dat=%3Cproquest_doaj_%3E2475960045%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475960045&rft_id=info:pmid/&rft_ieee_id=9305221&rft_doaj_id=oai_doaj_org_article_436a7b15359b410ba0399f89a96fd744&rfr_iscdi=true