Investigation of Electrical Behaviors Observed in Vertical GaN Nanowire Transistors Using Extended Landauer-Büttiker Formula

In this report, we study nonlinear electrical behaviors found in vertical-architecture transistors based on wrap-around-gated gallium nitride (GaN) nanowires (NWs) by extending a one-dimensional case of the Landauer-Büttiker formula. Here, the GaN NWs are considered "almost" one-dimensiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.2913-2923
Hauptverfasser: Noor, Fatimah Arofiati, Syuhada, Ibnu, Winata, Toto, Yu, Feng, Fatahilah, Muhammad Fahlesa, Wasisto, Hutomo Suryo, Khairurrijal, Khairurrijal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2923
container_issue
container_start_page 2913
container_title IEEE access
container_volume 9
creator Noor, Fatimah Arofiati
Syuhada, Ibnu
Winata, Toto
Yu, Feng
Fatahilah, Muhammad Fahlesa
Wasisto, Hutomo Suryo
Khairurrijal, Khairurrijal
description In this report, we study nonlinear electrical behaviors found in vertical-architecture transistors based on wrap-around-gated gallium nitride (GaN) nanowires (NWs) by extending a one-dimensional case of the Landauer-Büttiker formula. Here, the GaN NWs are considered "almost" one-dimensional ideal wires connecting the drain and source terminals, with the gate terminal serving to control the flowing current. Unlike previous models, which require several parameters and complex calculations, our proposed model only needs three parameters and simple calculations to match the experimental data. With this model, we confirm that the maximum current before saturation is a consequence of quasi-ballistic drain current. Thus, electron mobility has no effect in this device. Using a simple formulation, we discuss gating hysteresis in the device that is mediated by the selected oxide layer interface. We show that the memory effect of the device is attributed to time-delay current. The shorter gate length increases the transmission coefficient. As a result, the model can be employed to predict the next-generation NW transistor performance.
doi_str_mv 10.1109/ACCESS.2020.3047498
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2475960022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9309022</ieee_id><doaj_id>oai_doaj_org_article_187a75ce9b324f79ba0998d627e5ec10</doaj_id><sourcerecordid>2475960022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-685374078bcf864dc80d67e8ad4cb91ed843a14dfb98c105ecc2383e979426763</originalsourceid><addsrcrecordid>eNpNkc1O3DAUhaOKSkWUJ2BjiXUG_8U_SxgNdKQRLIBuLce-GTwNNrUz03bRN-uuL9aEIFRvbN17zmdfn6o6I3hBCNYXl8vl6v5-QTHFC4a55Fp9qI4pEbpmDRNH_50_Vael7PC41Fhq5HH1ex0PUIawtUNIEaUOrXpwQw7O9ugKnuwhpFzQXVsgH8CjENFXyMNr-8beolsb04-QAT1kG0sow6R-LCFu0ernANGPno2N3u4h11d__wxD-AYZXaf8vO_t5-pjZ_sCp2_7SfV4vXpYfqk3dzfr5eWmdqxRQy1UwyTHUrWuU4J7p7AXEpT13LWagFecWcJ912rlCG7AOcoUAy01p0IKdlKtZ65Pdmdecni2-ZdJNpjXQspbY6ehejBESSsbB7pllHdStxZrrbygEkYuwSPrfGa95PR9P_6d2aV9juPzDeWy0QJjSkcVm1Uup1IydO-3Emym2Mwcm5liM2-xja6z2RUA4N2hGdYT8x8-A5Um</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475960022</pqid></control><display><type>article</type><title>Investigation of Electrical Behaviors Observed in Vertical GaN Nanowire Transistors Using Extended Landauer-Büttiker Formula</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Noor, Fatimah Arofiati ; Syuhada, Ibnu ; Winata, Toto ; Yu, Feng ; Fatahilah, Muhammad Fahlesa ; Wasisto, Hutomo Suryo ; Khairurrijal, Khairurrijal</creator><creatorcontrib>Noor, Fatimah Arofiati ; Syuhada, Ibnu ; Winata, Toto ; Yu, Feng ; Fatahilah, Muhammad Fahlesa ; Wasisto, Hutomo Suryo ; Khairurrijal, Khairurrijal</creatorcontrib><description>In this report, we study nonlinear electrical behaviors found in vertical-architecture transistors based on wrap-around-gated gallium nitride (GaN) nanowires (NWs) by extending a one-dimensional case of the Landauer-Büttiker formula. Here, the GaN NWs are considered "almost" one-dimensional ideal wires connecting the drain and source terminals, with the gate terminal serving to control the flowing current. Unlike previous models, which require several parameters and complex calculations, our proposed model only needs three parameters and simple calculations to match the experimental data. With this model, we confirm that the maximum current before saturation is a consequence of quasi-ballistic drain current. Thus, electron mobility has no effect in this device. Using a simple formulation, we discuss gating hysteresis in the device that is mediated by the selected oxide layer interface. We show that the memory effect of the device is attributed to time-delay current. The shorter gate length increases the transmission coefficient. As a result, the model can be employed to predict the next-generation NW transistor performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3047498</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aluminum oxide ; Conductance ; density of states ; Electron mobility ; Field effect transistors ; Gallium nitride ; Gallium nitrides ; GaN nanowire transistor ; Logic gates ; Mathematical models ; Nanowires ; nonlinear drain current ; Parameters ; Semiconductor devices ; Semiconductor process modeling ; Threshold voltage ; time-delay current ; Transistors ; transmission coefficient ; Wires</subject><ispartof>IEEE access, 2021, Vol.9, p.2913-2923</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-685374078bcf864dc80d67e8ad4cb91ed843a14dfb98c105ecc2383e979426763</cites><orcidid>0000-0002-4522-3625 ; 0000-0002-8382-3760 ; 0000-0001-6583-643X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9309022$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Noor, Fatimah Arofiati</creatorcontrib><creatorcontrib>Syuhada, Ibnu</creatorcontrib><creatorcontrib>Winata, Toto</creatorcontrib><creatorcontrib>Yu, Feng</creatorcontrib><creatorcontrib>Fatahilah, Muhammad Fahlesa</creatorcontrib><creatorcontrib>Wasisto, Hutomo Suryo</creatorcontrib><creatorcontrib>Khairurrijal, Khairurrijal</creatorcontrib><title>Investigation of Electrical Behaviors Observed in Vertical GaN Nanowire Transistors Using Extended Landauer-Büttiker Formula</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this report, we study nonlinear electrical behaviors found in vertical-architecture transistors based on wrap-around-gated gallium nitride (GaN) nanowires (NWs) by extending a one-dimensional case of the Landauer-Büttiker formula. Here, the GaN NWs are considered "almost" one-dimensional ideal wires connecting the drain and source terminals, with the gate terminal serving to control the flowing current. Unlike previous models, which require several parameters and complex calculations, our proposed model only needs three parameters and simple calculations to match the experimental data. With this model, we confirm that the maximum current before saturation is a consequence of quasi-ballistic drain current. Thus, electron mobility has no effect in this device. Using a simple formulation, we discuss gating hysteresis in the device that is mediated by the selected oxide layer interface. We show that the memory effect of the device is attributed to time-delay current. The shorter gate length increases the transmission coefficient. As a result, the model can be employed to predict the next-generation NW transistor performance.</description><subject>Aluminum oxide</subject><subject>Conductance</subject><subject>density of states</subject><subject>Electron mobility</subject><subject>Field effect transistors</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN nanowire transistor</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>Nanowires</subject><subject>nonlinear drain current</subject><subject>Parameters</subject><subject>Semiconductor devices</subject><subject>Semiconductor process modeling</subject><subject>Threshold voltage</subject><subject>time-delay current</subject><subject>Transistors</subject><subject>transmission coefficient</subject><subject>Wires</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1O3DAUhaOKSkWUJ2BjiXUG_8U_SxgNdKQRLIBuLce-GTwNNrUz03bRN-uuL9aEIFRvbN17zmdfn6o6I3hBCNYXl8vl6v5-QTHFC4a55Fp9qI4pEbpmDRNH_50_Vael7PC41Fhq5HH1ex0PUIawtUNIEaUOrXpwQw7O9ugKnuwhpFzQXVsgH8CjENFXyMNr-8beolsb04-QAT1kG0sow6R-LCFu0ernANGPno2N3u4h11d__wxD-AYZXaf8vO_t5-pjZ_sCp2_7SfV4vXpYfqk3dzfr5eWmdqxRQy1UwyTHUrWuU4J7p7AXEpT13LWagFecWcJ912rlCG7AOcoUAy01p0IKdlKtZ65Pdmdecni2-ZdJNpjXQspbY6ehejBESSsbB7pllHdStxZrrbygEkYuwSPrfGa95PR9P_6d2aV9juPzDeWy0QJjSkcVm1Uup1IydO-3Emym2Mwcm5liM2-xja6z2RUA4N2hGdYT8x8-A5Um</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Noor, Fatimah Arofiati</creator><creator>Syuhada, Ibnu</creator><creator>Winata, Toto</creator><creator>Yu, Feng</creator><creator>Fatahilah, Muhammad Fahlesa</creator><creator>Wasisto, Hutomo Suryo</creator><creator>Khairurrijal, Khairurrijal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4522-3625</orcidid><orcidid>https://orcid.org/0000-0002-8382-3760</orcidid><orcidid>https://orcid.org/0000-0001-6583-643X</orcidid></search><sort><creationdate>2021</creationdate><title>Investigation of Electrical Behaviors Observed in Vertical GaN Nanowire Transistors Using Extended Landauer-Büttiker Formula</title><author>Noor, Fatimah Arofiati ; Syuhada, Ibnu ; Winata, Toto ; Yu, Feng ; Fatahilah, Muhammad Fahlesa ; Wasisto, Hutomo Suryo ; Khairurrijal, Khairurrijal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-685374078bcf864dc80d67e8ad4cb91ed843a14dfb98c105ecc2383e979426763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Conductance</topic><topic>density of states</topic><topic>Electron mobility</topic><topic>Field effect transistors</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN nanowire transistor</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>Nanowires</topic><topic>nonlinear drain current</topic><topic>Parameters</topic><topic>Semiconductor devices</topic><topic>Semiconductor process modeling</topic><topic>Threshold voltage</topic><topic>time-delay current</topic><topic>Transistors</topic><topic>transmission coefficient</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor, Fatimah Arofiati</creatorcontrib><creatorcontrib>Syuhada, Ibnu</creatorcontrib><creatorcontrib>Winata, Toto</creatorcontrib><creatorcontrib>Yu, Feng</creatorcontrib><creatorcontrib>Fatahilah, Muhammad Fahlesa</creatorcontrib><creatorcontrib>Wasisto, Hutomo Suryo</creatorcontrib><creatorcontrib>Khairurrijal, Khairurrijal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor, Fatimah Arofiati</au><au>Syuhada, Ibnu</au><au>Winata, Toto</au><au>Yu, Feng</au><au>Fatahilah, Muhammad Fahlesa</au><au>Wasisto, Hutomo Suryo</au><au>Khairurrijal, Khairurrijal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Electrical Behaviors Observed in Vertical GaN Nanowire Transistors Using Extended Landauer-Büttiker Formula</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>2913</spage><epage>2923</epage><pages>2913-2923</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this report, we study nonlinear electrical behaviors found in vertical-architecture transistors based on wrap-around-gated gallium nitride (GaN) nanowires (NWs) by extending a one-dimensional case of the Landauer-Büttiker formula. Here, the GaN NWs are considered "almost" one-dimensional ideal wires connecting the drain and source terminals, with the gate terminal serving to control the flowing current. Unlike previous models, which require several parameters and complex calculations, our proposed model only needs three parameters and simple calculations to match the experimental data. With this model, we confirm that the maximum current before saturation is a consequence of quasi-ballistic drain current. Thus, electron mobility has no effect in this device. Using a simple formulation, we discuss gating hysteresis in the device that is mediated by the selected oxide layer interface. We show that the memory effect of the device is attributed to time-delay current. The shorter gate length increases the transmission coefficient. As a result, the model can be employed to predict the next-generation NW transistor performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3047498</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4522-3625</orcidid><orcidid>https://orcid.org/0000-0002-8382-3760</orcidid><orcidid>https://orcid.org/0000-0001-6583-643X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.2913-2923
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2475960022
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aluminum oxide
Conductance
density of states
Electron mobility
Field effect transistors
Gallium nitride
Gallium nitrides
GaN nanowire transistor
Logic gates
Mathematical models
Nanowires
nonlinear drain current
Parameters
Semiconductor devices
Semiconductor process modeling
Threshold voltage
time-delay current
Transistors
transmission coefficient
Wires
title Investigation of Electrical Behaviors Observed in Vertical GaN Nanowire Transistors Using Extended Landauer-Büttiker Formula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Electrical%20Behaviors%20Observed%20in%20Vertical%20GaN%20Nanowire%20Transistors%20Using%20Extended%20Landauer-B%C3%BCttiker%20Formula&rft.jtitle=IEEE%20access&rft.au=Noor,%20Fatimah%20Arofiati&rft.date=2021&rft.volume=9&rft.spage=2913&rft.epage=2923&rft.pages=2913-2923&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3047498&rft_dat=%3Cproquest_ieee_%3E2475960022%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475960022&rft_id=info:pmid/&rft_ieee_id=9309022&rft_doaj_id=oai_doaj_org_article_187a75ce9b324f79ba0998d627e5ec10&rfr_iscdi=true