An Effective Blind Detection Technique for Medical Images Forgery
The progress in the technologies of communication has produced different methods of transferring and accessing medical images. The prevalent utilization of communication and information methods enables anyone to tamper the contents of the original images. Consequently, for protecting the privacy of...
Gespeichert in:
Veröffentlicht in: | Webology 2020-12, Vol.17 (2), p.862-873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 2 |
container_start_page | 862 |
container_title | Webology |
container_volume | 17 |
creator | Mohammed, Dr. Sahab Dheyaa Hasan, Taha Mohammed Waleed, Jumana |
description | The progress in the technologies of communication has produced different methods of transferring and accessing medical images. The prevalent utilization of communication and information methods enables anyone to tamper the contents of the original images. Consequently, for protecting the privacy of the patients and for ensuring the accuracy of diagnostics, a technique for detecting medical images forgery is needed. In that respect, in this paper, an effective block based detection technique for medical images has been proposed. In this proposed technique the copy and move tampering in the medical images can be detected in the discrete wavelet transform (DWT) and the matching process of blocks can be speeded up by utilizing the automatic clustering. The experimental results explain that the proposed forgery detection technique of medical images is capable of successfully detecting copy and move tampering with low processing time and high accuracy. |
doi_str_mv | 10.14704/WEB/V17I2/WEB17072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475935572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475935572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1872-3073d65e5e5ea169e28397bc07713298b7e50917091aa20fd03063f11077d0d33</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGExH9BF428VyZ2W2Z9ggISoLxgn9um6WdxRJocRdM-Pa2oImZw7yXvMy8_IS4RbjHmCDuvY-HvTekqWoVEpA6Ex0knUSYph_n__SluAphBRDHCqAjBoNKjp3jfFd-sxyuy6qQD7xrfV3JOeefVfm1Z-lqL5-5KHO7ltONXXKQk9ov2R-uxYWz68A3v7srXifj-egpmr08TkeDWZRjSirSQLroJ9yOxX7GKtUZLXIgQq2ydEGcQNZUz9BaBa4ADX3tEJtAAYXWXXF3urv1ddMo7Myq3vuqeWlUTEmmk4RUk9KnVO7rEDw7s_XlxvqDQTBHVqYhZI6szB8r_QNEalqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475935572</pqid></control><display><type>article</type><title>An Effective Blind Detection Technique for Medical Images Forgery</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mohammed, Dr. Sahab Dheyaa ; Hasan, Taha Mohammed ; Waleed, Jumana</creator><creatorcontrib>Mohammed, Dr. Sahab Dheyaa ; Hasan, Taha Mohammed ; Waleed, Jumana</creatorcontrib><description>The progress in the technologies of communication has produced different methods of transferring and accessing medical images. The prevalent utilization of communication and information methods enables anyone to tamper the contents of the original images. Consequently, for protecting the privacy of the patients and for ensuring the accuracy of diagnostics, a technique for detecting medical images forgery is needed. In that respect, in this paper, an effective block based detection technique for medical images has been proposed. In this proposed technique the copy and move tampering in the medical images can be detected in the discrete wavelet transform (DWT) and the matching process of blocks can be speeded up by utilizing the automatic clustering. The experimental results explain that the proposed forgery detection technique of medical images is capable of successfully detecting copy and move tampering with low processing time and high accuracy.</description><identifier>ISSN: 1735-188X</identifier><identifier>EISSN: 1735-188X</identifier><identifier>DOI: 10.14704/WEB/V17I2/WEB17072</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Algorithms ; Authenticity ; Digital signatures ; Forensic sciences ; Forgery ; Wavelet transforms</subject><ispartof>Webology, 2020-12, Vol.17 (2), p.862-873</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohammed, Dr. Sahab Dheyaa</creatorcontrib><creatorcontrib>Hasan, Taha Mohammed</creatorcontrib><creatorcontrib>Waleed, Jumana</creatorcontrib><title>An Effective Blind Detection Technique for Medical Images Forgery</title><title>Webology</title><description>The progress in the technologies of communication has produced different methods of transferring and accessing medical images. The prevalent utilization of communication and information methods enables anyone to tamper the contents of the original images. Consequently, for protecting the privacy of the patients and for ensuring the accuracy of diagnostics, a technique for detecting medical images forgery is needed. In that respect, in this paper, an effective block based detection technique for medical images has been proposed. In this proposed technique the copy and move tampering in the medical images can be detected in the discrete wavelet transform (DWT) and the matching process of blocks can be speeded up by utilizing the automatic clustering. The experimental results explain that the proposed forgery detection technique of medical images is capable of successfully detecting copy and move tampering with low processing time and high accuracy.</description><subject>Algorithms</subject><subject>Authenticity</subject><subject>Digital signatures</subject><subject>Forensic sciences</subject><subject>Forgery</subject><subject>Wavelet transforms</subject><issn>1735-188X</issn><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE9PwkAQxTdGExH9BF428VyZ2W2Z9ggISoLxgn9um6WdxRJocRdM-Pa2oImZw7yXvMy8_IS4RbjHmCDuvY-HvTekqWoVEpA6Ex0knUSYph_n__SluAphBRDHCqAjBoNKjp3jfFd-sxyuy6qQD7xrfV3JOeefVfm1Z-lqL5-5KHO7ltONXXKQk9ov2R-uxYWz68A3v7srXifj-egpmr08TkeDWZRjSirSQLroJ9yOxX7GKtUZLXIgQq2ydEGcQNZUz9BaBa4ADX3tEJtAAYXWXXF3urv1ddMo7Myq3vuqeWlUTEmmk4RUk9KnVO7rEDw7s_XlxvqDQTBHVqYhZI6szB8r_QNEalqk</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Mohammed, Dr. Sahab Dheyaa</creator><creator>Hasan, Taha Mohammed</creator><creator>Waleed, Jumana</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201201</creationdate><title>An Effective Blind Detection Technique for Medical Images Forgery</title><author>Mohammed, Dr. Sahab Dheyaa ; Hasan, Taha Mohammed ; Waleed, Jumana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1872-3073d65e5e5ea169e28397bc07713298b7e50917091aa20fd03063f11077d0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Authenticity</topic><topic>Digital signatures</topic><topic>Forensic sciences</topic><topic>Forgery</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, Dr. Sahab Dheyaa</creatorcontrib><creatorcontrib>Hasan, Taha Mohammed</creatorcontrib><creatorcontrib>Waleed, Jumana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammed, Dr. Sahab Dheyaa</au><au>Hasan, Taha Mohammed</au><au>Waleed, Jumana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Blind Detection Technique for Medical Images Forgery</atitle><jtitle>Webology</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>862</spage><epage>873</epage><pages>862-873</pages><issn>1735-188X</issn><eissn>1735-188X</eissn><abstract>The progress in the technologies of communication has produced different methods of transferring and accessing medical images. The prevalent utilization of communication and information methods enables anyone to tamper the contents of the original images. Consequently, for protecting the privacy of the patients and for ensuring the accuracy of diagnostics, a technique for detecting medical images forgery is needed. In that respect, in this paper, an effective block based detection technique for medical images has been proposed. In this proposed technique the copy and move tampering in the medical images can be detected in the discrete wavelet transform (DWT) and the matching process of blocks can be speeded up by utilizing the automatic clustering. The experimental results explain that the proposed forgery detection technique of medical images is capable of successfully detecting copy and move tampering with low processing time and high accuracy.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub><doi>10.14704/WEB/V17I2/WEB17072</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-188X |
ispartof | Webology, 2020-12, Vol.17 (2), p.862-873 |
issn | 1735-188X 1735-188X |
language | eng |
recordid | cdi_proquest_journals_2475935572 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Authenticity Digital signatures Forensic sciences Forgery Wavelet transforms |
title | An Effective Blind Detection Technique for Medical Images Forgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Blind%20Detection%20Technique%20for%20Medical%20Images%20Forgery&rft.jtitle=Webology&rft.au=Mohammed,%20Dr.%20Sahab%20Dheyaa&rft.date=2020-12-01&rft.volume=17&rft.issue=2&rft.spage=862&rft.epage=873&rft.pages=862-873&rft.issn=1735-188X&rft.eissn=1735-188X&rft_id=info:doi/10.14704/WEB/V17I2/WEB17072&rft_dat=%3Cproquest_cross%3E2475935572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475935572&rft_id=info:pmid/&rfr_iscdi=true |