Noncompact quasi‐Einstein manifolds conformal to a Euclidean space

The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2021-01, Vol.294 (1), p.132-144
Hauptverfasser: Ribeiro Jr, Ernani, Tenenblat, Keti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 132
container_title Mathematische Nachrichten
container_volume 294
creator Ribeiro Jr, Ernani
Tenenblat, Keti
description The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.
doi_str_mv 10.1002/mana.201900189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475762775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475762775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMkdiTrm249geq1J-JCgLSGyW49xIqRK7jROhbjwCz8iTkKoIRqa7nPNd6RBySWFGAdh1a72dMaAagCp9RCZUMJaynObHZDICIhUqezslZzGuAUBrmU_IzSp4F9qNdX2yHWysvz4-l7WPPdY-GRfrKjRlTFzwVeha2yR9SGyyHFxTl2h9EkcTz8lJZZuIFz93Sl5vly-L-_Tx-e5hMX9MHadSp04XBUXLtZQUnHKsAIEFx5Lp0pWMyUygVNyVyDEDxUBRTREdSC5Q2ZxPydVhd9OF7YCxN-swdH58aVgmhcyZlGKkZgfKdSHGDiuz6erWdjtDwexLmX0p81tqFPRBeK8b3P1Dm6f5av7nfgPoLm3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475762775</pqid></control><display><type>article</type><title>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</title><source>Wiley Journals</source><creator>Ribeiro Jr, Ernani ; Tenenblat, Keti</creator><creatorcontrib>Ribeiro Jr, Ernani ; Tenenblat, Keti</creatorcontrib><description>The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201900189</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>conformal metrics ; Einstein manifolds ; Euclidean geometry ; Euclidean space ; Manifolds (mathematics) ; quasi‐Einstein manifolds ; translation group</subject><ispartof>Mathematische Nachrichten, 2021-01, Vol.294 (1), p.132-144</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</citedby><cites>FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201900189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201900189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ribeiro Jr, Ernani</creatorcontrib><creatorcontrib>Tenenblat, Keti</creatorcontrib><title>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</title><title>Mathematische Nachrichten</title><description>The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.</description><subject>conformal metrics</subject><subject>Einstein manifolds</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Manifolds (mathematics)</subject><subject>quasi‐Einstein manifolds</subject><subject>translation group</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMkdiTrm249geq1J-JCgLSGyW49xIqRK7jROhbjwCz8iTkKoIRqa7nPNd6RBySWFGAdh1a72dMaAagCp9RCZUMJaynObHZDICIhUqezslZzGuAUBrmU_IzSp4F9qNdX2yHWysvz4-l7WPPdY-GRfrKjRlTFzwVeha2yR9SGyyHFxTl2h9EkcTz8lJZZuIFz93Sl5vly-L-_Tx-e5hMX9MHadSp04XBUXLtZQUnHKsAIEFx5Lp0pWMyUygVNyVyDEDxUBRTREdSC5Q2ZxPydVhd9OF7YCxN-swdH58aVgmhcyZlGKkZgfKdSHGDiuz6erWdjtDwexLmX0p81tqFPRBeK8b3P1Dm6f5av7nfgPoLm3c</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Ribeiro Jr, Ernani</creator><creator>Tenenblat, Keti</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</title><author>Ribeiro Jr, Ernani ; Tenenblat, Keti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>conformal metrics</topic><topic>Einstein manifolds</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Manifolds (mathematics)</topic><topic>quasi‐Einstein manifolds</topic><topic>translation group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro Jr, Ernani</creatorcontrib><creatorcontrib>Tenenblat, Keti</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro Jr, Ernani</au><au>Tenenblat, Keti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2021-01</date><risdate>2021</risdate><volume>294</volume><issue>1</issue><spage>132</spage><epage>144</epage><pages>132-144</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201900189</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2021-01, Vol.294 (1), p.132-144
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2475762775
source Wiley Journals
subjects conformal metrics
Einstein manifolds
Euclidean geometry
Euclidean space
Manifolds (mathematics)
quasi‐Einstein manifolds
translation group
title Noncompact quasi‐Einstein manifolds conformal to a Euclidean space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncompact%20quasi%E2%80%90Einstein%20manifolds%20conformal%20to%20a%20Euclidean%20space&rft.jtitle=Mathematische%20Nachrichten&rft.au=Ribeiro%20Jr,%20Ernani&rft.date=2021-01&rft.volume=294&rft.issue=1&rft.spage=132&rft.epage=144&rft.pages=132-144&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201900189&rft_dat=%3Cproquest_cross%3E2475762775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475762775&rft_id=info:pmid/&rfr_iscdi=true