Noncompact quasi‐Einstein manifolds conformal to a Euclidean space
The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2021-01, Vol.294 (1), p.132-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 1 |
container_start_page | 132 |
container_title | Mathematische Nachrichten |
container_volume | 294 |
creator | Ribeiro Jr, Ernani Tenenblat, Keti |
description | The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n. |
doi_str_mv | 10.1002/mana.201900189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475762775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475762775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMkdiTrm249geq1J-JCgLSGyW49xIqRK7jROhbjwCz8iTkKoIRqa7nPNd6RBySWFGAdh1a72dMaAagCp9RCZUMJaynObHZDICIhUqezslZzGuAUBrmU_IzSp4F9qNdX2yHWysvz4-l7WPPdY-GRfrKjRlTFzwVeha2yR9SGyyHFxTl2h9EkcTz8lJZZuIFz93Sl5vly-L-_Tx-e5hMX9MHadSp04XBUXLtZQUnHKsAIEFx5Lp0pWMyUygVNyVyDEDxUBRTREdSC5Q2ZxPydVhd9OF7YCxN-swdH58aVgmhcyZlGKkZgfKdSHGDiuz6erWdjtDwexLmX0p81tqFPRBeK8b3P1Dm6f5av7nfgPoLm3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475762775</pqid></control><display><type>article</type><title>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</title><source>Wiley Journals</source><creator>Ribeiro Jr, Ernani ; Tenenblat, Keti</creator><creatorcontrib>Ribeiro Jr, Ernani ; Tenenblat, Keti</creatorcontrib><description>The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201900189</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>conformal metrics ; Einstein manifolds ; Euclidean geometry ; Euclidean space ; Manifolds (mathematics) ; quasi‐Einstein manifolds ; translation group</subject><ispartof>Mathematische Nachrichten, 2021-01, Vol.294 (1), p.132-144</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</citedby><cites>FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201900189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201900189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ribeiro Jr, Ernani</creatorcontrib><creatorcontrib>Tenenblat, Keti</creatorcontrib><title>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</title><title>Mathematische Nachrichten</title><description>The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.</description><subject>conformal metrics</subject><subject>Einstein manifolds</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Manifolds (mathematics)</subject><subject>quasi‐Einstein manifolds</subject><subject>translation group</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMkdiTrm249geq1J-JCgLSGyW49xIqRK7jROhbjwCz8iTkKoIRqa7nPNd6RBySWFGAdh1a72dMaAagCp9RCZUMJaynObHZDICIhUqezslZzGuAUBrmU_IzSp4F9qNdX2yHWysvz4-l7WPPdY-GRfrKjRlTFzwVeha2yR9SGyyHFxTl2h9EkcTz8lJZZuIFz93Sl5vly-L-_Tx-e5hMX9MHadSp04XBUXLtZQUnHKsAIEFx5Lp0pWMyUygVNyVyDEDxUBRTREdSC5Q2ZxPydVhd9OF7YCxN-swdH58aVgmhcyZlGKkZgfKdSHGDiuz6erWdjtDwexLmX0p81tqFPRBeK8b3P1Dm6f5av7nfgPoLm3c</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Ribeiro Jr, Ernani</creator><creator>Tenenblat, Keti</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</title><author>Ribeiro Jr, Ernani ; Tenenblat, Keti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-c9bb1ea397710c8c2b05eb3ed29dcd22745e783cde3e408208191eec0735e8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>conformal metrics</topic><topic>Einstein manifolds</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Manifolds (mathematics)</topic><topic>quasi‐Einstein manifolds</topic><topic>translation group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro Jr, Ernani</creatorcontrib><creatorcontrib>Tenenblat, Keti</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro Jr, Ernani</au><au>Tenenblat, Keti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncompact quasi‐Einstein manifolds conformal to a Euclidean space</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2021-01</date><risdate>2021</risdate><volume>294</volume><issue>1</issue><spage>132</spage><epage>144</epage><pages>132-144</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>The goal of this article is to investigate nontrivial m‐quasi‐Einstein manifolds globally conformal to an n‐dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action of an (n−1)‐dimensional translation group, we provide a complete classification when λ=0 and m≥1 or m=2−n.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201900189</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2021-01, Vol.294 (1), p.132-144 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2475762775 |
source | Wiley Journals |
subjects | conformal metrics Einstein manifolds Euclidean geometry Euclidean space Manifolds (mathematics) quasi‐Einstein manifolds translation group |
title | Noncompact quasi‐Einstein manifolds conformal to a Euclidean space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncompact%20quasi%E2%80%90Einstein%20manifolds%20conformal%20to%20a%20Euclidean%20space&rft.jtitle=Mathematische%20Nachrichten&rft.au=Ribeiro%20Jr,%20Ernani&rft.date=2021-01&rft.volume=294&rft.issue=1&rft.spage=132&rft.epage=144&rft.pages=132-144&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201900189&rft_dat=%3Cproquest_cross%3E2475762775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475762775&rft_id=info:pmid/&rfr_iscdi=true |