Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field
We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in...
Gespeichert in:
Veröffentlicht in: | AIP advances 2021-01, Vol.11 (1), p.015102-015102-9, Article 015102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 015102-9 |
---|---|
container_issue | 1 |
container_start_page | 015102 |
container_title | AIP advances |
container_volume | 11 |
creator | Sekine, H. Koizumi, H. Komurasaki, K. |
description | We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well. |
doi_str_mv | 10.1063/5.0029492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2475183474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4b9c3f6d37740fdaa3677ad14067247</doaj_id><sourcerecordid>2475183474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoei0NJ24T8IuFKZms9JZikXawstgnQfTvNxm8vMZEwyFf315t4prRvFbHLOyfOevPA2zRuCLwju2EdxgTHteU-PmhNKhGoZpd2rP-rj5jznHa6H9wQrftKUWwd5SW50U0EwWRRsrYIPBkqIE4oewa8wLuUBBmSWlPZcmCqKvl2ieYA8AioPacnFJeTGeYg_w7RFdRhG1z5COrQjbCdXgkE-uMGeNa89DNmdP92nzd3l57vNVXvz9cv15tNNa3jPS-spqc4FFj0zGBtnVDVNDeNUWCW596BER73iiliGMUjKgGDhMVa9U4ydNtfrWhthp-cUxupGRwj6MIhpqyFVU4PTlt_3hvnOMik59haAdVKCJRx3knJZd71dd80pfl9cLnoXlzRV97o-C6IYl7xS71bKpJhzcv75V4L1PiIt9FNElf2wsj_cffTZBDcZ98zXiDosCRdknxaptPp_ehPKIb1NXKZSpe9XaVWt83-6-iv8GNMLqGfr2W_qer6p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475183474</pqid></control><display><type>article</type><title>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sekine, H. ; Koizumi, H. ; Komurasaki, K.</creator><creatorcontrib>Sekine, H. ; Koizumi, H. ; Komurasaki, K.</creatorcontrib><description>We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0029492</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Diamagnetism ; Electric fields ; Electrical resistivity ; Electrons ; Magnetic fields ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Plasmas ; Radio frequency plasma ; Science & Technology ; Science & Technology - Other Topics ; Technology ; Thrusters ; Transport theory</subject><ispartof>AIP advances, 2021-01, Vol.11 (1), p.015102-015102-9, Article 015102</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000607145100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</citedby><cites>FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</cites><orcidid>0000-0002-6140-4450 ; 0000-0003-1695-3255 ; 0000-0003-0120-1958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Sekine, H.</creatorcontrib><creatorcontrib>Koizumi, H.</creatorcontrib><creatorcontrib>Komurasaki, K.</creatorcontrib><title>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</title><title>AIP advances</title><addtitle>AIP ADV</addtitle><description>We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.</description><subject>Diamagnetism</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Electrons</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Plasmas</subject><subject>Radio frequency plasma</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><subject>Thrusters</subject><subject>Transport theory</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1rFTEUhoei0NJ24T8IuFKZms9JZikXawstgnQfTvNxm8vMZEwyFf315t4prRvFbHLOyfOevPA2zRuCLwju2EdxgTHteU-PmhNKhGoZpd2rP-rj5jznHa6H9wQrftKUWwd5SW50U0EwWRRsrYIPBkqIE4oewa8wLuUBBmSWlPZcmCqKvl2ieYA8AioPacnFJeTGeYg_w7RFdRhG1z5COrQjbCdXgkE-uMGeNa89DNmdP92nzd3l57vNVXvz9cv15tNNa3jPS-spqc4FFj0zGBtnVDVNDeNUWCW596BER73iiliGMUjKgGDhMVa9U4ydNtfrWhthp-cUxupGRwj6MIhpqyFVU4PTlt_3hvnOMik59haAdVKCJRx3knJZd71dd80pfl9cLnoXlzRV97o-C6IYl7xS71bKpJhzcv75V4L1PiIt9FNElf2wsj_cffTZBDcZ98zXiDosCRdknxaptPp_ehPKIb1NXKZSpe9XaVWt83-6-iv8GNMLqGfr2W_qer6p</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Sekine, H.</creator><creator>Koizumi, H.</creator><creator>Komurasaki, K.</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6140-4450</orcidid><orcidid>https://orcid.org/0000-0003-1695-3255</orcidid><orcidid>https://orcid.org/0000-0003-0120-1958</orcidid></search><sort><creationdate>20210101</creationdate><title>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</title><author>Sekine, H. ; Koizumi, H. ; Komurasaki, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diamagnetism</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Electrons</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Plasmas</topic><topic>Radio frequency plasma</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><topic>Thrusters</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekine, H.</creatorcontrib><creatorcontrib>Koizumi, H.</creatorcontrib><creatorcontrib>Komurasaki, K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekine, H.</au><au>Koizumi, H.</au><au>Komurasaki, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</atitle><jtitle>AIP advances</jtitle><stitle>AIP ADV</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>015102</spage><epage>015102-9</epage><pages>015102-015102-9</pages><artnum>015102</artnum><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0029492</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6140-4450</orcidid><orcidid>https://orcid.org/0000-0003-1695-3255</orcidid><orcidid>https://orcid.org/0000-0003-0120-1958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2021-01, Vol.11 (1), p.015102-015102-9, Article 015102 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2475183474 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Diamagnetism Electric fields Electrical resistivity Electrons Magnetic fields Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Physics Physics, Applied Plasmas Radio frequency plasma Science & Technology Science & Technology - Other Topics Technology Thrusters Transport theory |
title | Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20identification%20of%20azimuthal%20current%20in%20an%20RF%20plasma%20thruster%20employing%20a%20time-varying%20magnetic%20field&rft.jtitle=AIP%20advances&rft.au=Sekine,%20H.&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=015102&rft.epage=015102-9&rft.pages=015102-015102-9&rft.artnum=015102&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0029492&rft_dat=%3Cproquest_doaj_%3E2475183474%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475183474&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d4b9c3f6d37740fdaa3677ad14067247&rfr_iscdi=true |