Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field

We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2021-01, Vol.11 (1), p.015102-015102-9, Article 015102
Hauptverfasser: Sekine, H., Koizumi, H., Komurasaki, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015102-9
container_issue 1
container_start_page 015102
container_title AIP advances
container_volume 11
creator Sekine, H.
Koizumi, H.
Komurasaki, K.
description We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.
doi_str_mv 10.1063/5.0029492
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2475183474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4b9c3f6d37740fdaa3677ad14067247</doaj_id><sourcerecordid>2475183474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoei0NJ24T8IuFKZms9JZikXawstgnQfTvNxm8vMZEwyFf315t4prRvFbHLOyfOevPA2zRuCLwju2EdxgTHteU-PmhNKhGoZpd2rP-rj5jznHa6H9wQrftKUWwd5SW50U0EwWRRsrYIPBkqIE4oewa8wLuUBBmSWlPZcmCqKvl2ieYA8AioPacnFJeTGeYg_w7RFdRhG1z5COrQjbCdXgkE-uMGeNa89DNmdP92nzd3l57vNVXvz9cv15tNNa3jPS-spqc4FFj0zGBtnVDVNDeNUWCW596BER73iiliGMUjKgGDhMVa9U4ydNtfrWhthp-cUxupGRwj6MIhpqyFVU4PTlt_3hvnOMik59haAdVKCJRx3knJZd71dd80pfl9cLnoXlzRV97o-C6IYl7xS71bKpJhzcv75V4L1PiIt9FNElf2wsj_cffTZBDcZ98zXiDosCRdknxaptPp_ehPKIb1NXKZSpe9XaVWt83-6-iv8GNMLqGfr2W_qer6p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475183474</pqid></control><display><type>article</type><title>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sekine, H. ; Koizumi, H. ; Komurasaki, K.</creator><creatorcontrib>Sekine, H. ; Koizumi, H. ; Komurasaki, K.</creatorcontrib><description>We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0029492</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Diamagnetism ; Electric fields ; Electrical resistivity ; Electrons ; Magnetic fields ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Plasmas ; Radio frequency plasma ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology ; Thrusters ; Transport theory</subject><ispartof>AIP advances, 2021-01, Vol.11 (1), p.015102-015102-9, Article 015102</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000607145100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</citedby><cites>FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</cites><orcidid>0000-0002-6140-4450 ; 0000-0003-1695-3255 ; 0000-0003-0120-1958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Sekine, H.</creatorcontrib><creatorcontrib>Koizumi, H.</creatorcontrib><creatorcontrib>Komurasaki, K.</creatorcontrib><title>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</title><title>AIP advances</title><addtitle>AIP ADV</addtitle><description>We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.</description><subject>Diamagnetism</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Electrons</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Plasmas</subject><subject>Radio frequency plasma</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><subject>Thrusters</subject><subject>Transport theory</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1rFTEUhoei0NJ24T8IuFKZms9JZikXawstgnQfTvNxm8vMZEwyFf315t4prRvFbHLOyfOevPA2zRuCLwju2EdxgTHteU-PmhNKhGoZpd2rP-rj5jznHa6H9wQrftKUWwd5SW50U0EwWRRsrYIPBkqIE4oewa8wLuUBBmSWlPZcmCqKvl2ieYA8AioPacnFJeTGeYg_w7RFdRhG1z5COrQjbCdXgkE-uMGeNa89DNmdP92nzd3l57vNVXvz9cv15tNNa3jPS-spqc4FFj0zGBtnVDVNDeNUWCW596BER73iiliGMUjKgGDhMVa9U4ydNtfrWhthp-cUxupGRwj6MIhpqyFVU4PTlt_3hvnOMik59haAdVKCJRx3knJZd71dd80pfl9cLnoXlzRV97o-C6IYl7xS71bKpJhzcv75V4L1PiIt9FNElf2wsj_cffTZBDcZ98zXiDosCRdknxaptPp_ehPKIb1NXKZSpe9XaVWt83-6-iv8GNMLqGfr2W_qer6p</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Sekine, H.</creator><creator>Koizumi, H.</creator><creator>Komurasaki, K.</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6140-4450</orcidid><orcidid>https://orcid.org/0000-0003-1695-3255</orcidid><orcidid>https://orcid.org/0000-0003-0120-1958</orcidid></search><sort><creationdate>20210101</creationdate><title>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</title><author>Sekine, H. ; Koizumi, H. ; Komurasaki, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-f2121550593c00cec89102c3425d874ffa8562f8481d300a723a105f0089e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diamagnetism</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Electrons</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Plasmas</topic><topic>Radio frequency plasma</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><topic>Thrusters</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekine, H.</creatorcontrib><creatorcontrib>Koizumi, H.</creatorcontrib><creatorcontrib>Komurasaki, K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekine, H.</au><au>Koizumi, H.</au><au>Komurasaki, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field</atitle><jtitle>AIP advances</jtitle><stitle>AIP ADV</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>015102</spage><epage>015102-9</epage><pages>015102-015102-9</pages><artnum>015102</artnum><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>We report two-dimensional temporally resolved measurements of the magnetic field and the azimuthal current in a radio-frequency plasma thruster with a time-varying magnetic field. The measured azimuthal current cannot be explained by the classical cross-field transport theory, which has been used in modeling of inductive electrodeless plasma thrusters; rather, it is fairly close to the estimated current using parallel electrical conductivity. In the analysis in the collisionless limit, the comparison of the measured azimuthal current and the diamagnetic current implies the non-negligible contribution of the azimuthal electron E × B drift current in the azimuthal current, in contrast with the case of conventional helicon plasma thrusters. This result indicates the establishment of the strong in-plane perpendicular electric field, as observed in the previous experiment [H. Sekine, H. Koizumi, and K. Komurasaki, Phys. Plasmas 27, 103513 (2020)]. Based on the experimental results, we build a hypothesis on the wall-charging-induced in-plane perpendicular electric field and the in-plane current-free condition. By analyzing the electron momentum equation under this condition, the electrical conductivity in the azimuthal direction agrees to the parallel conductivity, explaining the present result well.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0029492</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6140-4450</orcidid><orcidid>https://orcid.org/0000-0003-1695-3255</orcidid><orcidid>https://orcid.org/0000-0003-0120-1958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2021-01, Vol.11 (1), p.015102-015102-9, Article 015102
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2475183474
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Diamagnetism
Electric fields
Electrical resistivity
Electrons
Magnetic fields
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
Plasmas
Radio frequency plasma
Science & Technology
Science & Technology - Other Topics
Technology
Thrusters
Transport theory
title Measurement and identification of azimuthal current in an RF plasma thruster employing a time-varying magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20identification%20of%20azimuthal%20current%20in%20an%20RF%20plasma%20thruster%20employing%20a%20time-varying%20magnetic%20field&rft.jtitle=AIP%20advances&rft.au=Sekine,%20H.&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=015102&rft.epage=015102-9&rft.pages=015102-015102-9&rft.artnum=015102&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0029492&rft_dat=%3Cproquest_doaj_%3E2475183474%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475183474&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d4b9c3f6d37740fdaa3677ad14067247&rfr_iscdi=true