Induced L-bornological vector spaces and L-Mackey convergence

Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-born...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-01, Vol.40 (1), p.1277
Hauptverfasser: Zhen-yu, Jin, Cong-hua, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1277
container_title Journal of intelligent & fuzzy systems
container_volume 40
creator Zhen-yu, Jin
Cong-hua, Yan
description Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.
doi_str_mv 10.3233/JIFS-201599
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2475130706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475130706</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-397dd326a3c7566014928483462fa15bd42a671d419fa49e89cc54965e0ed1d73</originalsourceid><addsrcrecordid>eNotjb1OwzAURi0EEqUw8QKRmA2-_vfAgCoKQUEdCnPl2jcVJbJDnFTi7SmC6TvD0fkIuQZ2K7gQdy_1ck05A-XcCZmBNYpap83pkZmWFLjU5-SilD1jYBRnM3JfpzgFjFVDt3lIucu7j-C76oBhzENVeh-wVD79Cq8-fOJ3FXI64LDDFPCSnLW-K3j1v3Pyvnx8WzzTZvVULx4a2oMVIxXOxCi49iIYpTUD6biVVkjNWw9qGyX32kCU4FovHVoXgpJOK2QYIRoxJzd_3X7IXxOWcbPP05COlxsujQLBDNPiB48jSBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475130706</pqid></control><display><type>article</type><title>Induced L-bornological vector spaces and L-Mackey convergence</title><source>Business Source Complete</source><creator>Zhen-yu, Jin ; Cong-hua, Yan</creator><creatorcontrib>Zhen-yu, Jin ; Cong-hua, Yan</creatorcontrib><description>Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-201599</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Convergence ; Separation ; Vector spaces</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.40 (1), p.1277</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhen-yu, Jin</creatorcontrib><creatorcontrib>Cong-hua, Yan</creatorcontrib><title>Induced L-bornological vector spaces and L-Mackey convergence</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.</description><subject>Convergence</subject><subject>Separation</subject><subject>Vector spaces</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotjb1OwzAURi0EEqUw8QKRmA2-_vfAgCoKQUEdCnPl2jcVJbJDnFTi7SmC6TvD0fkIuQZ2K7gQdy_1ck05A-XcCZmBNYpap83pkZmWFLjU5-SilD1jYBRnM3JfpzgFjFVDt3lIucu7j-C76oBhzENVeh-wVD79Cq8-fOJ3FXI64LDDFPCSnLW-K3j1v3Pyvnx8WzzTZvVULx4a2oMVIxXOxCi49iIYpTUD6biVVkjNWw9qGyX32kCU4FovHVoXgpJOK2QYIRoxJzd_3X7IXxOWcbPP05COlxsujQLBDNPiB48jSBY</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhen-yu, Jin</creator><creator>Cong-hua, Yan</creator><general>IOS Press BV</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Induced L-bornological vector spaces and L-Mackey convergence</title><author>Zhen-yu, Jin ; Cong-hua, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-397dd326a3c7566014928483462fa15bd42a671d419fa49e89cc54965e0ed1d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Separation</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhen-yu, Jin</creatorcontrib><creatorcontrib>Cong-hua, Yan</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhen-yu, Jin</au><au>Cong-hua, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced L-bornological vector spaces and L-Mackey convergence</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>1</issue><spage>1277</spage><pages>1277-</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-201599</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (1), p.1277
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2475130706
source Business Source Complete
subjects Convergence
Separation
Vector spaces
title Induced L-bornological vector spaces and L-Mackey convergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20L-bornological%20vector%20spaces%20and%20L-Mackey%20convergence&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zhen-yu,%20Jin&rft.date=2021-01-01&rft.volume=40&rft.issue=1&rft.spage=1277&rft.pages=1277-&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-201599&rft_dat=%3Cproquest%3E2475130706%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475130706&rft_id=info:pmid/&rfr_iscdi=true