Research on tool control system of double cutters experimental platform based on fuzzy neural network predictive control

According to the characteristics of the tool hydraulic control system of the double cutters experimental pplatform, intelligent control methodology forecasted by fuzzy neural network is introduced into the control system. The two level control systems of fuzzy neural network predictive control and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-01, Vol.40 (1), p.65-76
Hauptverfasser: Zhou, Peng, Tian, Junxing, Sun, Jian, Yao, Jinmei, Zou, Defang, Yu, Wenda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 65
container_title Journal of intelligent & fuzzy systems
container_volume 40
creator Zhou, Peng
Tian, Junxing
Sun, Jian
Yao, Jinmei
Zou, Defang
Yu, Wenda
description According to the characteristics of the tool hydraulic control system of the double cutters experimental pplatform, intelligent control methodology forecasted by fuzzy neural network is introduced into the control system. The two level control systems of fuzzy neural network predictive control and fuzzy control are designed. The fuzzy neural network predictive controller mainly completes the analysis and control of the speed and pressure in the tool hydraulic system. The speed control signal and pressure control signal from the first level are output to the fuzzy controller. Then, through logical reasoning, the control signal is output and the actuator is driven by the fuzzy controller to complete the control function of the tool system. In this paper, compared with the traditional PID control, the fuzzy neural network predictive control technology has better control accuracy, dynamic response performance and steady-state accuracy. The fuzzy neural network predictive control technology can be used to control the tool hydraulic system of Tunnel Boring Machine.
doi_str_mv 10.3233/JIFS-182804
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475130693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475130693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-edc6990baf171dc4e2eb75bff49c92567754af2a51d7907bbca3cc226ee403e53</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOKdX_oGAl1LNd9pLGU4nA8GP65KmJ7jZNTVJdd2vt2N69R44L8_hPAhdUnLDGee3T4v5a0ZzlhNxhCY01zLLC6WPx5kokVEm1Ck6i3FNCNWSkQnavkAEE-wH9i1O3jfY-jaFMeMQE2ywd7j2fdUAtn1KECKGbQdhtYE2mQZ3jUnOhw2uTIR6D3H9bjfgFvowrltIPz584i5AvbJp9Q3__HN04kwT4eIvp-h9fv82e8yWzw-L2d0ys0zRlEFtVVGQyjiqaW0FMKi0rJwThS2YVFpLYRwzkta6ILqqrOHWMqYABOEg-RRdHbhd8F89xFSufR_a8WTJhJaUE1XwsXV9aNngYwzgym580YShpKTcqy33asuDWv4Ly3JvPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475130693</pqid></control><display><type>article</type><title>Research on tool control system of double cutters experimental platform based on fuzzy neural network predictive control</title><source>EBSCOhost Business Source Complete</source><creator>Zhou, Peng ; Tian, Junxing ; Sun, Jian ; Yao, Jinmei ; Zou, Defang ; Yu, Wenda</creator><creatorcontrib>Zhou, Peng ; Tian, Junxing ; Sun, Jian ; Yao, Jinmei ; Zou, Defang ; Yu, Wenda</creatorcontrib><description>According to the characteristics of the tool hydraulic control system of the double cutters experimental pplatform, intelligent control methodology forecasted by fuzzy neural network is introduced into the control system. The two level control systems of fuzzy neural network predictive control and fuzzy control are designed. The fuzzy neural network predictive controller mainly completes the analysis and control of the speed and pressure in the tool hydraulic system. The speed control signal and pressure control signal from the first level are output to the fuzzy controller. Then, through logical reasoning, the control signal is output and the actuator is driven by the fuzzy controller to complete the control function of the tool system. In this paper, compared with the traditional PID control, the fuzzy neural network predictive control technology has better control accuracy, dynamic response performance and steady-state accuracy. The fuzzy neural network predictive control technology can be used to control the tool hydraulic system of Tunnel Boring Machine.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-182804</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Actuators ; Artificial neural networks ; Boring machines ; Boring tools ; Cognition &amp; reasoning ; Control methods ; Control systems ; Controllers ; Cutters ; Dynamic response ; Fuzzy control ; Fuzzy logic ; Fuzzy systems ; Hydraulic control ; Hydraulic equipment ; Hydraulics ; Neural networks ; Predictive control ; Proportional integral derivative ; Speed control ; Tunnel construction</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.40 (1), p.65-76</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-edc6990baf171dc4e2eb75bff49c92567754af2a51d7907bbca3cc226ee403e53</citedby><cites>FETCH-LOGICAL-c261t-edc6990baf171dc4e2eb75bff49c92567754af2a51d7907bbca3cc226ee403e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Tian, Junxing</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Yao, Jinmei</creatorcontrib><creatorcontrib>Zou, Defang</creatorcontrib><creatorcontrib>Yu, Wenda</creatorcontrib><title>Research on tool control system of double cutters experimental platform based on fuzzy neural network predictive control</title><title>Journal of intelligent &amp; fuzzy systems</title><description>According to the characteristics of the tool hydraulic control system of the double cutters experimental pplatform, intelligent control methodology forecasted by fuzzy neural network is introduced into the control system. The two level control systems of fuzzy neural network predictive control and fuzzy control are designed. The fuzzy neural network predictive controller mainly completes the analysis and control of the speed and pressure in the tool hydraulic system. The speed control signal and pressure control signal from the first level are output to the fuzzy controller. Then, through logical reasoning, the control signal is output and the actuator is driven by the fuzzy controller to complete the control function of the tool system. In this paper, compared with the traditional PID control, the fuzzy neural network predictive control technology has better control accuracy, dynamic response performance and steady-state accuracy. The fuzzy neural network predictive control technology can be used to control the tool hydraulic system of Tunnel Boring Machine.</description><subject>Actuators</subject><subject>Artificial neural networks</subject><subject>Boring machines</subject><subject>Boring tools</subject><subject>Cognition &amp; reasoning</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Cutters</subject><subject>Dynamic response</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Hydraulic control</subject><subject>Hydraulic equipment</subject><subject>Hydraulics</subject><subject>Neural networks</subject><subject>Predictive control</subject><subject>Proportional integral derivative</subject><subject>Speed control</subject><subject>Tunnel construction</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAUhoMoOKdX_oGAl1LNd9pLGU4nA8GP65KmJ7jZNTVJdd2vt2N69R44L8_hPAhdUnLDGee3T4v5a0ZzlhNxhCY01zLLC6WPx5kokVEm1Ck6i3FNCNWSkQnavkAEE-wH9i1O3jfY-jaFMeMQE2ywd7j2fdUAtn1KECKGbQdhtYE2mQZ3jUnOhw2uTIR6D3H9bjfgFvowrltIPz584i5AvbJp9Q3__HN04kwT4eIvp-h9fv82e8yWzw-L2d0ys0zRlEFtVVGQyjiqaW0FMKi0rJwThS2YVFpLYRwzkta6ILqqrOHWMqYABOEg-RRdHbhd8F89xFSufR_a8WTJhJaUE1XwsXV9aNngYwzgym580YShpKTcqy33asuDWv4Ly3JvPw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhou, Peng</creator><creator>Tian, Junxing</creator><creator>Sun, Jian</creator><creator>Yao, Jinmei</creator><creator>Zou, Defang</creator><creator>Yu, Wenda</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Research on tool control system of double cutters experimental platform based on fuzzy neural network predictive control</title><author>Zhou, Peng ; Tian, Junxing ; Sun, Jian ; Yao, Jinmei ; Zou, Defang ; Yu, Wenda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-edc6990baf171dc4e2eb75bff49c92567754af2a51d7907bbca3cc226ee403e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Artificial neural networks</topic><topic>Boring machines</topic><topic>Boring tools</topic><topic>Cognition &amp; reasoning</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Cutters</topic><topic>Dynamic response</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Hydraulic control</topic><topic>Hydraulic equipment</topic><topic>Hydraulics</topic><topic>Neural networks</topic><topic>Predictive control</topic><topic>Proportional integral derivative</topic><topic>Speed control</topic><topic>Tunnel construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Tian, Junxing</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Yao, Jinmei</creatorcontrib><creatorcontrib>Zou, Defang</creatorcontrib><creatorcontrib>Yu, Wenda</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Peng</au><au>Tian, Junxing</au><au>Sun, Jian</au><au>Yao, Jinmei</au><au>Zou, Defang</au><au>Yu, Wenda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on tool control system of double cutters experimental platform based on fuzzy neural network predictive control</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>According to the characteristics of the tool hydraulic control system of the double cutters experimental pplatform, intelligent control methodology forecasted by fuzzy neural network is introduced into the control system. The two level control systems of fuzzy neural network predictive control and fuzzy control are designed. The fuzzy neural network predictive controller mainly completes the analysis and control of the speed and pressure in the tool hydraulic system. The speed control signal and pressure control signal from the first level are output to the fuzzy controller. Then, through logical reasoning, the control signal is output and the actuator is driven by the fuzzy controller to complete the control function of the tool system. In this paper, compared with the traditional PID control, the fuzzy neural network predictive control technology has better control accuracy, dynamic response performance and steady-state accuracy. The fuzzy neural network predictive control technology can be used to control the tool hydraulic system of Tunnel Boring Machine.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-182804</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (1), p.65-76
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2475130693
source EBSCOhost Business Source Complete
subjects Actuators
Artificial neural networks
Boring machines
Boring tools
Cognition & reasoning
Control methods
Control systems
Controllers
Cutters
Dynamic response
Fuzzy control
Fuzzy logic
Fuzzy systems
Hydraulic control
Hydraulic equipment
Hydraulics
Neural networks
Predictive control
Proportional integral derivative
Speed control
Tunnel construction
title Research on tool control system of double cutters experimental platform based on fuzzy neural network predictive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20tool%20control%20system%20of%20double%20cutters%20experimental%20platform%20based%20on%20fuzzy%20neural%20network%20predictive%20control&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zhou,%20Peng&rft.date=2021-01-01&rft.volume=40&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-182804&rft_dat=%3Cproquest_cross%3E2475130693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475130693&rft_id=info:pmid/&rfr_iscdi=true