Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city

The fast development of urban advancement in the past decade requires reasonable and realistic solutions for transport, building infrastructure, natural conditions, and personal satisfaction in smart cities. This paper presents and explores predictive energy consumption models based on data-mining t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building research and information : the international journal of research, development and demonstration development and demonstration, 2021-01, Vol.49 (1), p.127-143
Hauptverfasser: V E, Sathishkumar, Shin, Changsun, Cho, Yongyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 127
container_title Building research and information : the international journal of research, development and demonstration
container_volume 49
creator V E, Sathishkumar
Shin, Changsun
Cho, Yongyun
description The fast development of urban advancement in the past decade requires reasonable and realistic solutions for transport, building infrastructure, natural conditions, and personal satisfaction in smart cities. This paper presents and explores predictive energy consumption models based on data-mining techniques for a smart small-scale steel industry in South Korea. Energy consumption data is collected using IoT based systems and used for prediction. Data used include the lagging and leading current reactive power, the lagging and leading current power factor, carbon dioxide emissions, and load types. Five statistical algorithms are used for energy consumption prediction:(a) General linear regression, (b) Classification and regression trees, (c) Support vector machine with a radial basis kernel, (d) K nearest neighbours, (e) CUBIST. Root mean squared error, Mean absolute error and Coefficient of variation are used to measure the prediction efficiency of the models. The results show that CUBIST model provides best results with lower error values and this model can be used for the development of energy efficient structural design which helps to optimize the energy consumption and policy making in smart cities.
doi_str_mv 10.1080/09613218.2020.1809983
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2475066545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475066545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f8393be0f60744fedf5c0f39bd6935c63e51aa3c5fa9e29840052b260447e1763</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_QQh43jq7eXT3ppT6AMGLnkM2D0ndJjXJIvvvTW29epph5pth5kPouoZFDS3cQsdr0tTtooGmlFroupacoFlNOa9o6Zyi2Z6p9tA5ukhpAwANo2yGPtfWOuWMz9h4Ez8mrIJP43aXXfB4F4126jfdBm0GbEPEEmuZJZZeDlN2qjJe9oPR2Hk9phwn3I9u0M5_lEqB01bGjJXL0yU6s3JI5uoY5-j9Yf22eqpeXh-fV_cvlSKkzZVtSUd6A5bDklJrtGUKLOl6zTvCFCeG1VISxazsTNO1FIA1fcOB0qWpl5zM0c1h7y6Gr9GkLDZhjOXcJBq6ZMB5eb1Q7ECpGFKKxopddOXWSdQg9l7Fn1ex9yqOXsvc3WHO-WJjK79DHLTIchpCtFF65ZIg_6_4AcXDf-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475066545</pqid></control><display><type>article</type><title>Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city</title><source>EBSCOhost Business Source Complete</source><creator>V E, Sathishkumar ; Shin, Changsun ; Cho, Yongyun</creator><creatorcontrib>V E, Sathishkumar ; Shin, Changsun ; Cho, Yongyun</creatorcontrib><description>The fast development of urban advancement in the past decade requires reasonable and realistic solutions for transport, building infrastructure, natural conditions, and personal satisfaction in smart cities. This paper presents and explores predictive energy consumption models based on data-mining techniques for a smart small-scale steel industry in South Korea. Energy consumption data is collected using IoT based systems and used for prediction. Data used include the lagging and leading current reactive power, the lagging and leading current power factor, carbon dioxide emissions, and load types. Five statistical algorithms are used for energy consumption prediction:(a) General linear regression, (b) Classification and regression trees, (c) Support vector machine with a radial basis kernel, (d) K nearest neighbours, (e) CUBIST. Root mean squared error, Mean absolute error and Coefficient of variation are used to measure the prediction efficiency of the models. The results show that CUBIST model provides best results with lower error values and this model can be used for the development of energy efficient structural design which helps to optimize the energy consumption and policy making in smart cities.</description><identifier>ISSN: 0961-3218</identifier><identifier>EISSN: 1466-4321</identifier><identifier>DOI: 10.1080/09613218.2020.1809983</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Algorithms ; Carbon dioxide ; Carbon dioxide emissions ; Coefficient of variation ; data analysis ; Data mining ; Design optimization ; Energy consumption ; Energy efficiency ; Energy management ; feature ranking ; Iron and steel industry ; Power factor ; Prediction models ; Reactive power ; Regression analysis ; Smart cities ; Statistical analysis ; Steel industry ; Structural design ; Structural engineering ; Support vector machines</subject><ispartof>Building research and information : the international journal of research, development and demonstration, 2021-01, Vol.49 (1), p.127-143</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f8393be0f60744fedf5c0f39bd6935c63e51aa3c5fa9e29840052b260447e1763</citedby><cites>FETCH-LOGICAL-c338t-f8393be0f60744fedf5c0f39bd6935c63e51aa3c5fa9e29840052b260447e1763</cites><orcidid>0000-0002-4855-4163 ; 0000-0002-8271-2022 ; 0000-0002-5494-4395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>V E, Sathishkumar</creatorcontrib><creatorcontrib>Shin, Changsun</creatorcontrib><creatorcontrib>Cho, Yongyun</creatorcontrib><title>Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city</title><title>Building research and information : the international journal of research, development and demonstration</title><description>The fast development of urban advancement in the past decade requires reasonable and realistic solutions for transport, building infrastructure, natural conditions, and personal satisfaction in smart cities. This paper presents and explores predictive energy consumption models based on data-mining techniques for a smart small-scale steel industry in South Korea. Energy consumption data is collected using IoT based systems and used for prediction. Data used include the lagging and leading current reactive power, the lagging and leading current power factor, carbon dioxide emissions, and load types. Five statistical algorithms are used for energy consumption prediction:(a) General linear regression, (b) Classification and regression trees, (c) Support vector machine with a radial basis kernel, (d) K nearest neighbours, (e) CUBIST. Root mean squared error, Mean absolute error and Coefficient of variation are used to measure the prediction efficiency of the models. The results show that CUBIST model provides best results with lower error values and this model can be used for the development of energy efficient structural design which helps to optimize the energy consumption and policy making in smart cities.</description><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Coefficient of variation</subject><subject>data analysis</subject><subject>Data mining</subject><subject>Design optimization</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>feature ranking</subject><subject>Iron and steel industry</subject><subject>Power factor</subject><subject>Prediction models</subject><subject>Reactive power</subject><subject>Regression analysis</subject><subject>Smart cities</subject><subject>Statistical analysis</subject><subject>Steel industry</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Support vector machines</subject><issn>0961-3218</issn><issn>1466-4321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_QQh43jq7eXT3ppT6AMGLnkM2D0ndJjXJIvvvTW29epph5pth5kPouoZFDS3cQsdr0tTtooGmlFroupacoFlNOa9o6Zyi2Z6p9tA5ukhpAwANo2yGPtfWOuWMz9h4Ez8mrIJP43aXXfB4F4126jfdBm0GbEPEEmuZJZZeDlN2qjJe9oPR2Hk9phwn3I9u0M5_lEqB01bGjJXL0yU6s3JI5uoY5-j9Yf22eqpeXh-fV_cvlSKkzZVtSUd6A5bDklJrtGUKLOl6zTvCFCeG1VISxazsTNO1FIA1fcOB0qWpl5zM0c1h7y6Gr9GkLDZhjOXcJBq6ZMB5eb1Q7ECpGFKKxopddOXWSdQg9l7Fn1ex9yqOXsvc3WHO-WJjK79DHLTIchpCtFF65ZIg_6_4AcXDf-E</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>V E, Sathishkumar</creator><creator>Shin, Changsun</creator><creator>Cho, Yongyun</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4855-4163</orcidid><orcidid>https://orcid.org/0000-0002-8271-2022</orcidid><orcidid>https://orcid.org/0000-0002-5494-4395</orcidid></search><sort><creationdate>20210102</creationdate><title>Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city</title><author>V E, Sathishkumar ; Shin, Changsun ; Cho, Yongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f8393be0f60744fedf5c0f39bd6935c63e51aa3c5fa9e29840052b260447e1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Coefficient of variation</topic><topic>data analysis</topic><topic>Data mining</topic><topic>Design optimization</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>feature ranking</topic><topic>Iron and steel industry</topic><topic>Power factor</topic><topic>Prediction models</topic><topic>Reactive power</topic><topic>Regression analysis</topic><topic>Smart cities</topic><topic>Statistical analysis</topic><topic>Steel industry</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>V E, Sathishkumar</creatorcontrib><creatorcontrib>Shin, Changsun</creatorcontrib><creatorcontrib>Cho, Yongyun</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Building research and information : the international journal of research, development and demonstration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>V E, Sathishkumar</au><au>Shin, Changsun</au><au>Cho, Yongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city</atitle><jtitle>Building research and information : the international journal of research, development and demonstration</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>49</volume><issue>1</issue><spage>127</spage><epage>143</epage><pages>127-143</pages><issn>0961-3218</issn><eissn>1466-4321</eissn><abstract>The fast development of urban advancement in the past decade requires reasonable and realistic solutions for transport, building infrastructure, natural conditions, and personal satisfaction in smart cities. This paper presents and explores predictive energy consumption models based on data-mining techniques for a smart small-scale steel industry in South Korea. Energy consumption data is collected using IoT based systems and used for prediction. Data used include the lagging and leading current reactive power, the lagging and leading current power factor, carbon dioxide emissions, and load types. Five statistical algorithms are used for energy consumption prediction:(a) General linear regression, (b) Classification and regression trees, (c) Support vector machine with a radial basis kernel, (d) K nearest neighbours, (e) CUBIST. Root mean squared error, Mean absolute error and Coefficient of variation are used to measure the prediction efficiency of the models. The results show that CUBIST model provides best results with lower error values and this model can be used for the development of energy efficient structural design which helps to optimize the energy consumption and policy making in smart cities.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/09613218.2020.1809983</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4855-4163</orcidid><orcidid>https://orcid.org/0000-0002-8271-2022</orcidid><orcidid>https://orcid.org/0000-0002-5494-4395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0961-3218
ispartof Building research and information : the international journal of research, development and demonstration, 2021-01, Vol.49 (1), p.127-143
issn 0961-3218
1466-4321
language eng
recordid cdi_proquest_journals_2475066545
source EBSCOhost Business Source Complete
subjects Algorithms
Carbon dioxide
Carbon dioxide emissions
Coefficient of variation
data analysis
Data mining
Design optimization
Energy consumption
Energy efficiency
Energy management
feature ranking
Iron and steel industry
Power factor
Prediction models
Reactive power
Regression analysis
Smart cities
Statistical analysis
Steel industry
Structural design
Structural engineering
Support vector machines
title Efficient energy consumption prediction model for a data analytic-enabled industry building in a smart city
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20energy%20consumption%20prediction%20model%20for%20a%20data%20analytic-enabled%20industry%20building%20in%20a%20smart%20city&rft.jtitle=Building%20research%20and%20information%20:%20the%20international%20journal%20of%20research,%20development%20and%20demonstration&rft.au=V%20E,%20Sathishkumar&rft.date=2021-01-02&rft.volume=49&rft.issue=1&rft.spage=127&rft.epage=143&rft.pages=127-143&rft.issn=0961-3218&rft.eissn=1466-4321&rft_id=info:doi/10.1080/09613218.2020.1809983&rft_dat=%3Cproquest_infor%3E2475066545%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475066545&rft_id=info:pmid/&rfr_iscdi=true