Longwave radiative effect of the cloud twilight zone

Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2020-10, Vol.13 (10), p.669-673
Hauptverfasser: Eytan, Eshkol, Koren, Ilan, Altaratz, Orit, Kostinski, Alexander B., Ronen, Ayala
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 10
container_start_page 669
container_title Nature geoscience
container_volume 13
creator Eytan, Eshkol
Koren, Ilan
Altaratz, Orit
Kostinski, Alexander B.
Ronen, Ayala
description Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m –2 , which is equivalent to the radiative forcing from increasing atmospheric CO 2 by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget. The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.
doi_str_mv 10.1038/s41561-020-0636-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475058344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475058344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AdTS3yWUpxRsMuNF1yMyctFPqpCapRZ_elFFcuTr_4r8cPoQuKbmmhOubJGgtKSaMYCK5xPoIzaiqGSaG6ONfrY04RWcprQmRRKh6hkQTxuXefUAVXT-4PBQF3kOXq-CrvIKq24RdX-X9sBmWq1x9hRHO0Yl3mwQXP3eOXu_vXhaPuHl-eFrcNrjjVGYMSikHtDXSGel7Bky2vVSKtcJIBj2lzLStNrrvWs8ZgBau04pzCS0xhvA5upp6tzG87yBluw67OJZJy8r3pNZciOKik6uLIaUI3m7j8Obip6XEHuDYCY4tcOwBjtUlw6ZMKt5xCfGv-f_QNwWFZjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475058344</pqid></control><display><type>article</type><title>Longwave radiative effect of the cloud twilight zone</title><source>SpringerLink Journals</source><creator>Eytan, Eshkol ; Koren, Ilan ; Altaratz, Orit ; Kostinski, Alexander B. ; Ronen, Ayala</creator><creatorcontrib>Eytan, Eshkol ; Koren, Ilan ; Altaratz, Orit ; Kostinski, Alexander B. ; Ronen, Ayala</creatorcontrib><description>Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m –2 , which is equivalent to the radiative forcing from increasing atmospheric CO 2 by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget. The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-020-0636-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35 ; 704/106/35/823 ; 704/106/35/824 ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Clouds ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Energy budget ; Fields ; Geochemistry ; Geology ; Geophysics/Geodesy ; Infrared analysis ; Infrared radiation ; Long wave radiation ; Lower bounds ; Meteorological satellites ; Radiation budget ; Radiative forcing ; Satellite observation ; Satellites ; Sky ; Twilight</subject><ispartof>Nature geoscience, 2020-10, Vol.13 (10), p.669-673</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</citedby><cites>FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</cites><orcidid>0000-0003-1033-615X ; 0000-0001-6759-6265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-020-0636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-020-0636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eytan, Eshkol</creatorcontrib><creatorcontrib>Koren, Ilan</creatorcontrib><creatorcontrib>Altaratz, Orit</creatorcontrib><creatorcontrib>Kostinski, Alexander B.</creatorcontrib><creatorcontrib>Ronen, Ayala</creatorcontrib><title>Longwave radiative effect of the cloud twilight zone</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m –2 , which is equivalent to the radiative forcing from increasing atmospheric CO 2 by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget. The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.</description><subject>704/106/35</subject><subject>704/106/35/823</subject><subject>704/106/35/824</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Clouds</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Energy budget</subject><subject>Fields</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Infrared analysis</subject><subject>Infrared radiation</subject><subject>Long wave radiation</subject><subject>Lower bounds</subject><subject>Meteorological satellites</subject><subject>Radiation budget</subject><subject>Radiative forcing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sky</subject><subject>Twilight</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G7AdTS3yWUpxRsMuNF1yMyctFPqpCapRZ_elFFcuTr_4r8cPoQuKbmmhOubJGgtKSaMYCK5xPoIzaiqGSaG6ONfrY04RWcprQmRRKh6hkQTxuXefUAVXT-4PBQF3kOXq-CrvIKq24RdX-X9sBmWq1x9hRHO0Yl3mwQXP3eOXu_vXhaPuHl-eFrcNrjjVGYMSikHtDXSGel7Bky2vVSKtcJIBj2lzLStNrrvWs8ZgBau04pzCS0xhvA5upp6tzG87yBluw67OJZJy8r3pNZciOKik6uLIaUI3m7j8Obip6XEHuDYCY4tcOwBjtUlw6ZMKt5xCfGv-f_QNwWFZjQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Eytan, Eshkol</creator><creator>Koren, Ilan</creator><creator>Altaratz, Orit</creator><creator>Kostinski, Alexander B.</creator><creator>Ronen, Ayala</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1033-615X</orcidid><orcidid>https://orcid.org/0000-0001-6759-6265</orcidid></search><sort><creationdate>20201001</creationdate><title>Longwave radiative effect of the cloud twilight zone</title><author>Eytan, Eshkol ; Koren, Ilan ; Altaratz, Orit ; Kostinski, Alexander B. ; Ronen, Ayala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/106/35</topic><topic>704/106/35/823</topic><topic>704/106/35/824</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Clouds</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Energy budget</topic><topic>Fields</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Infrared analysis</topic><topic>Infrared radiation</topic><topic>Long wave radiation</topic><topic>Lower bounds</topic><topic>Meteorological satellites</topic><topic>Radiation budget</topic><topic>Radiative forcing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sky</topic><topic>Twilight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eytan, Eshkol</creatorcontrib><creatorcontrib>Koren, Ilan</creatorcontrib><creatorcontrib>Altaratz, Orit</creatorcontrib><creatorcontrib>Kostinski, Alexander B.</creatorcontrib><creatorcontrib>Ronen, Ayala</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eytan, Eshkol</au><au>Koren, Ilan</au><au>Altaratz, Orit</au><au>Kostinski, Alexander B.</au><au>Ronen, Ayala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longwave radiative effect of the cloud twilight zone</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>10</issue><spage>669</spage><epage>673</epage><pages>669-673</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m –2 , which is equivalent to the radiative forcing from increasing atmospheric CO 2 by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget. The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-020-0636-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1033-615X</orcidid><orcidid>https://orcid.org/0000-0001-6759-6265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2020-10, Vol.13 (10), p.669-673
issn 1752-0894
1752-0908
language eng
recordid cdi_proquest_journals_2475058344
source SpringerLink Journals
subjects 704/106/35
704/106/35/823
704/106/35/824
Carbon dioxide
Carbon dioxide atmospheric concentrations
Clouds
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Energy budget
Fields
Geochemistry
Geology
Geophysics/Geodesy
Infrared analysis
Infrared radiation
Long wave radiation
Lower bounds
Meteorological satellites
Radiation budget
Radiative forcing
Satellite observation
Satellites
Sky
Twilight
title Longwave radiative effect of the cloud twilight zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longwave%20radiative%20effect%20of%20the%20cloud%20twilight%20zone&rft.jtitle=Nature%20geoscience&rft.au=Eytan,%20Eshkol&rft.date=2020-10-01&rft.volume=13&rft.issue=10&rft.spage=669&rft.epage=673&rft.pages=669-673&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-020-0636-8&rft_dat=%3Cproquest_cross%3E2475058344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475058344&rft_id=info:pmid/&rfr_iscdi=true