Longwave radiative effect of the cloud twilight zone
Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2020-10, Vol.13 (10), p.669-673 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 10 |
container_start_page | 669 |
container_title | Nature geoscience |
container_volume | 13 |
creator | Eytan, Eshkol Koren, Ilan Altaratz, Orit Kostinski, Alexander B. Ronen, Ayala |
description | Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m
–2
, which is equivalent to the radiative forcing from increasing atmospheric CO
2
by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget.
The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations. |
doi_str_mv | 10.1038/s41561-020-0636-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475058344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475058344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AdTS3yWUpxRsMuNF1yMyctFPqpCapRZ_elFFcuTr_4r8cPoQuKbmmhOubJGgtKSaMYCK5xPoIzaiqGSaG6ONfrY04RWcprQmRRKh6hkQTxuXefUAVXT-4PBQF3kOXq-CrvIKq24RdX-X9sBmWq1x9hRHO0Yl3mwQXP3eOXu_vXhaPuHl-eFrcNrjjVGYMSikHtDXSGel7Bky2vVSKtcJIBj2lzLStNrrvWs8ZgBau04pzCS0xhvA5upp6tzG87yBluw67OJZJy8r3pNZciOKik6uLIaUI3m7j8Obip6XEHuDYCY4tcOwBjtUlw6ZMKt5xCfGv-f_QNwWFZjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475058344</pqid></control><display><type>article</type><title>Longwave radiative effect of the cloud twilight zone</title><source>SpringerLink Journals</source><creator>Eytan, Eshkol ; Koren, Ilan ; Altaratz, Orit ; Kostinski, Alexander B. ; Ronen, Ayala</creator><creatorcontrib>Eytan, Eshkol ; Koren, Ilan ; Altaratz, Orit ; Kostinski, Alexander B. ; Ronen, Ayala</creatorcontrib><description>Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m
–2
, which is equivalent to the radiative forcing from increasing atmospheric CO
2
by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget.
The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-020-0636-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35 ; 704/106/35/823 ; 704/106/35/824 ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Clouds ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Energy budget ; Fields ; Geochemistry ; Geology ; Geophysics/Geodesy ; Infrared analysis ; Infrared radiation ; Long wave radiation ; Lower bounds ; Meteorological satellites ; Radiation budget ; Radiative forcing ; Satellite observation ; Satellites ; Sky ; Twilight</subject><ispartof>Nature geoscience, 2020-10, Vol.13 (10), p.669-673</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</citedby><cites>FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</cites><orcidid>0000-0003-1033-615X ; 0000-0001-6759-6265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-020-0636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-020-0636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eytan, Eshkol</creatorcontrib><creatorcontrib>Koren, Ilan</creatorcontrib><creatorcontrib>Altaratz, Orit</creatorcontrib><creatorcontrib>Kostinski, Alexander B.</creatorcontrib><creatorcontrib>Ronen, Ayala</creatorcontrib><title>Longwave radiative effect of the cloud twilight zone</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m
–2
, which is equivalent to the radiative forcing from increasing atmospheric CO
2
by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget.
The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.</description><subject>704/106/35</subject><subject>704/106/35/823</subject><subject>704/106/35/824</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Clouds</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Energy budget</subject><subject>Fields</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Infrared analysis</subject><subject>Infrared radiation</subject><subject>Long wave radiation</subject><subject>Lower bounds</subject><subject>Meteorological satellites</subject><subject>Radiation budget</subject><subject>Radiative forcing</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sky</subject><subject>Twilight</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G7AdTS3yWUpxRsMuNF1yMyctFPqpCapRZ_elFFcuTr_4r8cPoQuKbmmhOubJGgtKSaMYCK5xPoIzaiqGSaG6ONfrY04RWcprQmRRKh6hkQTxuXefUAVXT-4PBQF3kOXq-CrvIKq24RdX-X9sBmWq1x9hRHO0Yl3mwQXP3eOXu_vXhaPuHl-eFrcNrjjVGYMSikHtDXSGel7Bky2vVSKtcJIBj2lzLStNrrvWs8ZgBau04pzCS0xhvA5upp6tzG87yBluw67OJZJy8r3pNZciOKik6uLIaUI3m7j8Obip6XEHuDYCY4tcOwBjtUlw6ZMKt5xCfGv-f_QNwWFZjQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Eytan, Eshkol</creator><creator>Koren, Ilan</creator><creator>Altaratz, Orit</creator><creator>Kostinski, Alexander B.</creator><creator>Ronen, Ayala</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1033-615X</orcidid><orcidid>https://orcid.org/0000-0001-6759-6265</orcidid></search><sort><creationdate>20201001</creationdate><title>Longwave radiative effect of the cloud twilight zone</title><author>Eytan, Eshkol ; Koren, Ilan ; Altaratz, Orit ; Kostinski, Alexander B. ; Ronen, Ayala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e777ae1b96a96fd2e26bd6772b4962ed1129bb898dcbf32ee84ac87336eb09903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/106/35</topic><topic>704/106/35/823</topic><topic>704/106/35/824</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Clouds</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Energy budget</topic><topic>Fields</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Infrared analysis</topic><topic>Infrared radiation</topic><topic>Long wave radiation</topic><topic>Lower bounds</topic><topic>Meteorological satellites</topic><topic>Radiation budget</topic><topic>Radiative forcing</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sky</topic><topic>Twilight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eytan, Eshkol</creatorcontrib><creatorcontrib>Koren, Ilan</creatorcontrib><creatorcontrib>Altaratz, Orit</creatorcontrib><creatorcontrib>Kostinski, Alexander B.</creatorcontrib><creatorcontrib>Ronen, Ayala</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eytan, Eshkol</au><au>Koren, Ilan</au><au>Altaratz, Orit</au><au>Kostinski, Alexander B.</au><au>Ronen, Ayala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longwave radiative effect of the cloud twilight zone</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>10</issue><spage>669</spage><epage>673</epage><pages>669-673</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m
–2
, which is equivalent to the radiative forcing from increasing atmospheric CO
2
by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget.
The transitional state between cloudy and clear skies, known as the twilight zone, has a substantial effect on the atmospheric energy budget, according to an analysis of cloud fields using global satellite observations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-020-0636-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1033-615X</orcidid><orcidid>https://orcid.org/0000-0001-6759-6265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2020-10, Vol.13 (10), p.669-673 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_2475058344 |
source | SpringerLink Journals |
subjects | 704/106/35 704/106/35/823 704/106/35/824 Carbon dioxide Carbon dioxide atmospheric concentrations Clouds Earth and Environmental Science Earth Sciences Earth System Sciences Energy budget Fields Geochemistry Geology Geophysics/Geodesy Infrared analysis Infrared radiation Long wave radiation Lower bounds Meteorological satellites Radiation budget Radiative forcing Satellite observation Satellites Sky Twilight |
title | Longwave radiative effect of the cloud twilight zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longwave%20radiative%20effect%20of%20the%20cloud%20twilight%20zone&rft.jtitle=Nature%20geoscience&rft.au=Eytan,%20Eshkol&rft.date=2020-10-01&rft.volume=13&rft.issue=10&rft.spage=669&rft.epage=673&rft.pages=669-673&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-020-0636-8&rft_dat=%3Cproquest_cross%3E2475058344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475058344&rft_id=info:pmid/&rfr_iscdi=true |