Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry
Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2020-05, Vol.15 (5), p.373-379 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 5 |
container_start_page | 373 |
container_title | Nature nanotechnology |
container_volume | 15 |
creator | Lauster, Daniel Klenk, Simon Ludwig, Kai Nojoumi, Saba Behren, Sandra Adam, Lutz Stadtmüller, Marlena Saenger, Sandra Zimmler, Stephanie Hönzke, Katja Yao, Ling Hoffmann, Ute Bardua, Markus Hamann, Alf Witzenrath, Martin Sander, Leif E. Wolff, Thorsten Hocke, Andreas C. Hippenstiel, Stefan De Carlo, Sacha Neudecker, Jens Osterrieder, Klaus Budisa, Nediljko Netz, Roland R. Böttcher, Christoph Liese, Susanne Herrmann, Andreas Hackenberger, Christian P. R. |
description | Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion
1
–
4
. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies
5
and peptides
6
or that address late steps of the viral replication cycle
7
.
Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection. |
doi_str_mv | 10.1038/s41565-020-0660-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475051752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475051752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAWyQJdYBvx0vUcVLQoIFsLWcxG5TUifYCah8PYlSygpWM9K9c0Y6AJxidIERTS8jw1zwBBGUICFQQvbAFEuWJpQqvr_bUzkBRzGuEOJEEXYIJpQQionEU_D6tDQLC3PTxLKA3vi6MaEt88pG-Fm2S1hYV3pbwKpcGF9AE4LxC7u2voVZVedvsPSu6qz_MvCjDF2EfRI2x-DAmSrak-2cgZeb6-f5XfLweHs_v3pIcsZom4gcOS6QM7hgVtHUKINUajCjDqe5UNJx6wolLZOoUAZTjnFGqFJcZFJyQWfgfOQ2oX7vbGz1qu6C719qwiRHHEtO_m-h3hJWbGDhsZWHOsZgnW5CuTZhozHSg289-ta9bz341gP5bEvusrUtdhc_gvsCGQuxj3px4ff139RvquuJtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401741946</pqid></control><display><type>article</type><title>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lauster, Daniel ; Klenk, Simon ; Ludwig, Kai ; Nojoumi, Saba ; Behren, Sandra ; Adam, Lutz ; Stadtmüller, Marlena ; Saenger, Sandra ; Zimmler, Stephanie ; Hönzke, Katja ; Yao, Ling ; Hoffmann, Ute ; Bardua, Markus ; Hamann, Alf ; Witzenrath, Martin ; Sander, Leif E. ; Wolff, Thorsten ; Hocke, Andreas C. ; Hippenstiel, Stefan ; De Carlo, Sacha ; Neudecker, Jens ; Osterrieder, Klaus ; Budisa, Nediljko ; Netz, Roland R. ; Böttcher, Christoph ; Liese, Susanne ; Herrmann, Andreas ; Hackenberger, Christian P. R.</creator><creatorcontrib>Lauster, Daniel ; Klenk, Simon ; Ludwig, Kai ; Nojoumi, Saba ; Behren, Sandra ; Adam, Lutz ; Stadtmüller, Marlena ; Saenger, Sandra ; Zimmler, Stephanie ; Hönzke, Katja ; Yao, Ling ; Hoffmann, Ute ; Bardua, Markus ; Hamann, Alf ; Witzenrath, Martin ; Sander, Leif E. ; Wolff, Thorsten ; Hocke, Andreas C. ; Hippenstiel, Stefan ; De Carlo, Sacha ; Neudecker, Jens ; Osterrieder, Klaus ; Budisa, Nediljko ; Netz, Roland R. ; Böttcher, Christoph ; Liese, Susanne ; Herrmann, Andreas ; Hackenberger, Christian P. R.</creatorcontrib><description>Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion
1
–
4
. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies
5
and peptides
6
or that address late steps of the viral replication cycle
7
.
Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0660-2</identifier><identifier>PMID: 32231271</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/131 ; 631/61/350/354 ; 639/638 ; A549 Cells ; Adhesives ; Allolevivirus - metabolism ; Animals ; Binders ; Binding Sites ; Capsid - metabolism ; Capsids ; Cell adhesion ; Cell adhesion & migration ; Chemistry and Materials Science ; Dogs ; Hemagglutinin Glycoproteins, Influenza Virus - metabolism ; Hemagglutinins ; Humans ; Infections ; Influenza ; Influenza A ; Influenza A virus - physiology ; Influenza, Human - metabolism ; Influenza, Human - prevention & control ; Influenza, Human - virology ; Interfaces ; Letter ; Ligands ; Madin Darby Canine Kidney Cells ; Materials Science ; Models, Molecular ; Nanoparticles ; Nanoparticles - metabolism ; Nanoparticles - therapeutic use ; Nanotechnology ; Nanotechnology and Microengineering ; Orthomyxoviridae Infections - metabolism ; Orthomyxoviridae Infections - prevention & control ; Orthomyxoviridae Infections - virology ; Pathogens ; Phages ; Proteins ; Spike protein ; Viral infections ; Virus Internalization ; Viruses</subject><ispartof>Nature nanotechnology, 2020-05, Vol.15 (5), p.373-379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</citedby><cites>FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</cites><orcidid>0000-0001-7420-5488 ; 0000-0002-6716-2026 ; 0000-0001-7457-4742 ; 0000-0001-7688-236X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-020-0660-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-020-0660-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauster, Daniel</creatorcontrib><creatorcontrib>Klenk, Simon</creatorcontrib><creatorcontrib>Ludwig, Kai</creatorcontrib><creatorcontrib>Nojoumi, Saba</creatorcontrib><creatorcontrib>Behren, Sandra</creatorcontrib><creatorcontrib>Adam, Lutz</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Saenger, Sandra</creatorcontrib><creatorcontrib>Zimmler, Stephanie</creatorcontrib><creatorcontrib>Hönzke, Katja</creatorcontrib><creatorcontrib>Yao, Ling</creatorcontrib><creatorcontrib>Hoffmann, Ute</creatorcontrib><creatorcontrib>Bardua, Markus</creatorcontrib><creatorcontrib>Hamann, Alf</creatorcontrib><creatorcontrib>Witzenrath, Martin</creatorcontrib><creatorcontrib>Sander, Leif E.</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Hocke, Andreas C.</creatorcontrib><creatorcontrib>Hippenstiel, Stefan</creatorcontrib><creatorcontrib>De Carlo, Sacha</creatorcontrib><creatorcontrib>Neudecker, Jens</creatorcontrib><creatorcontrib>Osterrieder, Klaus</creatorcontrib><creatorcontrib>Budisa, Nediljko</creatorcontrib><creatorcontrib>Netz, Roland R.</creatorcontrib><creatorcontrib>Böttcher, Christoph</creatorcontrib><creatorcontrib>Liese, Susanne</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><creatorcontrib>Hackenberger, Christian P. R.</creatorcontrib><title>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion
1
–
4
. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies
5
and peptides
6
or that address late steps of the viral replication cycle
7
.
Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.</description><subject>119/118</subject><subject>140/131</subject><subject>631/61/350/354</subject><subject>639/638</subject><subject>A549 Cells</subject><subject>Adhesives</subject><subject>Allolevivirus - metabolism</subject><subject>Animals</subject><subject>Binders</subject><subject>Binding Sites</subject><subject>Capsid - metabolism</subject><subject>Capsids</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Chemistry and Materials Science</subject><subject>Dogs</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</subject><subject>Hemagglutinins</subject><subject>Humans</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A virus - physiology</subject><subject>Influenza, Human - metabolism</subject><subject>Influenza, Human - prevention & control</subject><subject>Influenza, Human - virology</subject><subject>Interfaces</subject><subject>Letter</subject><subject>Ligands</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Materials Science</subject><subject>Models, Molecular</subject><subject>Nanoparticles</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - therapeutic use</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Orthomyxoviridae Infections - metabolism</subject><subject>Orthomyxoviridae Infections - prevention & control</subject><subject>Orthomyxoviridae Infections - virology</subject><subject>Pathogens</subject><subject>Phages</subject><subject>Proteins</subject><subject>Spike protein</subject><subject>Viral infections</subject><subject>Virus Internalization</subject><subject>Viruses</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAWyQJdYBvx0vUcVLQoIFsLWcxG5TUifYCah8PYlSygpWM9K9c0Y6AJxidIERTS8jw1zwBBGUICFQQvbAFEuWJpQqvr_bUzkBRzGuEOJEEXYIJpQQionEU_D6tDQLC3PTxLKA3vi6MaEt88pG-Fm2S1hYV3pbwKpcGF9AE4LxC7u2voVZVedvsPSu6qz_MvCjDF2EfRI2x-DAmSrak-2cgZeb6-f5XfLweHs_v3pIcsZom4gcOS6QM7hgVtHUKINUajCjDqe5UNJx6wolLZOoUAZTjnFGqFJcZFJyQWfgfOQ2oX7vbGz1qu6C719qwiRHHEtO_m-h3hJWbGDhsZWHOsZgnW5CuTZhozHSg289-ta9bz341gP5bEvusrUtdhc_gvsCGQuxj3px4ff139RvquuJtg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lauster, Daniel</creator><creator>Klenk, Simon</creator><creator>Ludwig, Kai</creator><creator>Nojoumi, Saba</creator><creator>Behren, Sandra</creator><creator>Adam, Lutz</creator><creator>Stadtmüller, Marlena</creator><creator>Saenger, Sandra</creator><creator>Zimmler, Stephanie</creator><creator>Hönzke, Katja</creator><creator>Yao, Ling</creator><creator>Hoffmann, Ute</creator><creator>Bardua, Markus</creator><creator>Hamann, Alf</creator><creator>Witzenrath, Martin</creator><creator>Sander, Leif E.</creator><creator>Wolff, Thorsten</creator><creator>Hocke, Andreas C.</creator><creator>Hippenstiel, Stefan</creator><creator>De Carlo, Sacha</creator><creator>Neudecker, Jens</creator><creator>Osterrieder, Klaus</creator><creator>Budisa, Nediljko</creator><creator>Netz, Roland R.</creator><creator>Böttcher, Christoph</creator><creator>Liese, Susanne</creator><creator>Herrmann, Andreas</creator><creator>Hackenberger, Christian P. R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7420-5488</orcidid><orcidid>https://orcid.org/0000-0002-6716-2026</orcidid><orcidid>https://orcid.org/0000-0001-7457-4742</orcidid><orcidid>https://orcid.org/0000-0001-7688-236X</orcidid></search><sort><creationdate>20200501</creationdate><title>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</title><author>Lauster, Daniel ; Klenk, Simon ; Ludwig, Kai ; Nojoumi, Saba ; Behren, Sandra ; Adam, Lutz ; Stadtmüller, Marlena ; Saenger, Sandra ; Zimmler, Stephanie ; Hönzke, Katja ; Yao, Ling ; Hoffmann, Ute ; Bardua, Markus ; Hamann, Alf ; Witzenrath, Martin ; Sander, Leif E. ; Wolff, Thorsten ; Hocke, Andreas C. ; Hippenstiel, Stefan ; De Carlo, Sacha ; Neudecker, Jens ; Osterrieder, Klaus ; Budisa, Nediljko ; Netz, Roland R. ; Böttcher, Christoph ; Liese, Susanne ; Herrmann, Andreas ; Hackenberger, Christian P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/131</topic><topic>631/61/350/354</topic><topic>639/638</topic><topic>A549 Cells</topic><topic>Adhesives</topic><topic>Allolevivirus - metabolism</topic><topic>Animals</topic><topic>Binders</topic><topic>Binding Sites</topic><topic>Capsid - metabolism</topic><topic>Capsids</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Chemistry and Materials Science</topic><topic>Dogs</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</topic><topic>Hemagglutinins</topic><topic>Humans</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A virus - physiology</topic><topic>Influenza, Human - metabolism</topic><topic>Influenza, Human - prevention & control</topic><topic>Influenza, Human - virology</topic><topic>Interfaces</topic><topic>Letter</topic><topic>Ligands</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Materials Science</topic><topic>Models, Molecular</topic><topic>Nanoparticles</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - therapeutic use</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Orthomyxoviridae Infections - metabolism</topic><topic>Orthomyxoviridae Infections - prevention & control</topic><topic>Orthomyxoviridae Infections - virology</topic><topic>Pathogens</topic><topic>Phages</topic><topic>Proteins</topic><topic>Spike protein</topic><topic>Viral infections</topic><topic>Virus Internalization</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauster, Daniel</creatorcontrib><creatorcontrib>Klenk, Simon</creatorcontrib><creatorcontrib>Ludwig, Kai</creatorcontrib><creatorcontrib>Nojoumi, Saba</creatorcontrib><creatorcontrib>Behren, Sandra</creatorcontrib><creatorcontrib>Adam, Lutz</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Saenger, Sandra</creatorcontrib><creatorcontrib>Zimmler, Stephanie</creatorcontrib><creatorcontrib>Hönzke, Katja</creatorcontrib><creatorcontrib>Yao, Ling</creatorcontrib><creatorcontrib>Hoffmann, Ute</creatorcontrib><creatorcontrib>Bardua, Markus</creatorcontrib><creatorcontrib>Hamann, Alf</creatorcontrib><creatorcontrib>Witzenrath, Martin</creatorcontrib><creatorcontrib>Sander, Leif E.</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Hocke, Andreas C.</creatorcontrib><creatorcontrib>Hippenstiel, Stefan</creatorcontrib><creatorcontrib>De Carlo, Sacha</creatorcontrib><creatorcontrib>Neudecker, Jens</creatorcontrib><creatorcontrib>Osterrieder, Klaus</creatorcontrib><creatorcontrib>Budisa, Nediljko</creatorcontrib><creatorcontrib>Netz, Roland R.</creatorcontrib><creatorcontrib>Böttcher, Christoph</creatorcontrib><creatorcontrib>Liese, Susanne</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><creatorcontrib>Hackenberger, Christian P. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauster, Daniel</au><au>Klenk, Simon</au><au>Ludwig, Kai</au><au>Nojoumi, Saba</au><au>Behren, Sandra</au><au>Adam, Lutz</au><au>Stadtmüller, Marlena</au><au>Saenger, Sandra</au><au>Zimmler, Stephanie</au><au>Hönzke, Katja</au><au>Yao, Ling</au><au>Hoffmann, Ute</au><au>Bardua, Markus</au><au>Hamann, Alf</au><au>Witzenrath, Martin</au><au>Sander, Leif E.</au><au>Wolff, Thorsten</au><au>Hocke, Andreas C.</au><au>Hippenstiel, Stefan</au><au>De Carlo, Sacha</au><au>Neudecker, Jens</au><au>Osterrieder, Klaus</au><au>Budisa, Nediljko</au><au>Netz, Roland R.</au><au>Böttcher, Christoph</au><au>Liese, Susanne</au><au>Herrmann, Andreas</au><au>Hackenberger, Christian P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>373</spage><epage>379</epage><pages>373-379</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion
1
–
4
. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies
5
and peptides
6
or that address late steps of the viral replication cycle
7
.
Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32231271</pmid><doi>10.1038/s41565-020-0660-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7420-5488</orcidid><orcidid>https://orcid.org/0000-0002-6716-2026</orcidid><orcidid>https://orcid.org/0000-0001-7457-4742</orcidid><orcidid>https://orcid.org/0000-0001-7688-236X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2020-05, Vol.15 (5), p.373-379 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_journals_2475051752 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 119/118 140/131 631/61/350/354 639/638 A549 Cells Adhesives Allolevivirus - metabolism Animals Binders Binding Sites Capsid - metabolism Capsids Cell adhesion Cell adhesion & migration Chemistry and Materials Science Dogs Hemagglutinin Glycoproteins, Influenza Virus - metabolism Hemagglutinins Humans Infections Influenza Influenza A Influenza A virus - physiology Influenza, Human - metabolism Influenza, Human - prevention & control Influenza, Human - virology Interfaces Letter Ligands Madin Darby Canine Kidney Cells Materials Science Models, Molecular Nanoparticles Nanoparticles - metabolism Nanoparticles - therapeutic use Nanotechnology Nanotechnology and Microengineering Orthomyxoviridae Infections - metabolism Orthomyxoviridae Infections - prevention & control Orthomyxoviridae Infections - virology Pathogens Phages Proteins Spike protein Viral infections Virus Internalization Viruses |
title | Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage%20capsid%20nanoparticles%20with%20defined%20ligand%20arrangement%20block%20influenza%20virus%20entry&rft.jtitle=Nature%20nanotechnology&rft.au=Lauster,%20Daniel&rft.date=2020-05-01&rft.volume=15&rft.issue=5&rft.spage=373&rft.epage=379&rft.pages=373-379&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0660-2&rft_dat=%3Cproquest_cross%3E2475051752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401741946&rft_id=info:pmid/32231271&rfr_iscdi=true |