Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry

Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-05, Vol.15 (5), p.373-379
Hauptverfasser: Lauster, Daniel, Klenk, Simon, Ludwig, Kai, Nojoumi, Saba, Behren, Sandra, Adam, Lutz, Stadtmüller, Marlena, Saenger, Sandra, Zimmler, Stephanie, Hönzke, Katja, Yao, Ling, Hoffmann, Ute, Bardua, Markus, Hamann, Alf, Witzenrath, Martin, Sander, Leif E., Wolff, Thorsten, Hocke, Andreas C., Hippenstiel, Stefan, De Carlo, Sacha, Neudecker, Jens, Osterrieder, Klaus, Budisa, Nediljko, Netz, Roland R., Böttcher, Christoph, Liese, Susanne, Herrmann, Andreas, Hackenberger, Christian P. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 5
container_start_page 373
container_title Nature nanotechnology
container_volume 15
creator Lauster, Daniel
Klenk, Simon
Ludwig, Kai
Nojoumi, Saba
Behren, Sandra
Adam, Lutz
Stadtmüller, Marlena
Saenger, Sandra
Zimmler, Stephanie
Hönzke, Katja
Yao, Ling
Hoffmann, Ute
Bardua, Markus
Hamann, Alf
Witzenrath, Martin
Sander, Leif E.
Wolff, Thorsten
Hocke, Andreas C.
Hippenstiel, Stefan
De Carlo, Sacha
Neudecker, Jens
Osterrieder, Klaus
Budisa, Nediljko
Netz, Roland R.
Böttcher, Christoph
Liese, Susanne
Herrmann, Andreas
Hackenberger, Christian P. R.
description Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion 1 – 4 . Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies 5 and peptides 6 or that address late steps of the viral replication cycle 7 . Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.
doi_str_mv 10.1038/s41565-020-0660-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475051752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475051752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAWyQJdYBvx0vUcVLQoIFsLWcxG5TUifYCah8PYlSygpWM9K9c0Y6AJxidIERTS8jw1zwBBGUICFQQvbAFEuWJpQqvr_bUzkBRzGuEOJEEXYIJpQQionEU_D6tDQLC3PTxLKA3vi6MaEt88pG-Fm2S1hYV3pbwKpcGF9AE4LxC7u2voVZVedvsPSu6qz_MvCjDF2EfRI2x-DAmSrak-2cgZeb6-f5XfLweHs_v3pIcsZom4gcOS6QM7hgVtHUKINUajCjDqe5UNJx6wolLZOoUAZTjnFGqFJcZFJyQWfgfOQ2oX7vbGz1qu6C719qwiRHHEtO_m-h3hJWbGDhsZWHOsZgnW5CuTZhozHSg289-ta9bz341gP5bEvusrUtdhc_gvsCGQuxj3px4ff139RvquuJtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401741946</pqid></control><display><type>article</type><title>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lauster, Daniel ; Klenk, Simon ; Ludwig, Kai ; Nojoumi, Saba ; Behren, Sandra ; Adam, Lutz ; Stadtmüller, Marlena ; Saenger, Sandra ; Zimmler, Stephanie ; Hönzke, Katja ; Yao, Ling ; Hoffmann, Ute ; Bardua, Markus ; Hamann, Alf ; Witzenrath, Martin ; Sander, Leif E. ; Wolff, Thorsten ; Hocke, Andreas C. ; Hippenstiel, Stefan ; De Carlo, Sacha ; Neudecker, Jens ; Osterrieder, Klaus ; Budisa, Nediljko ; Netz, Roland R. ; Böttcher, Christoph ; Liese, Susanne ; Herrmann, Andreas ; Hackenberger, Christian P. R.</creator><creatorcontrib>Lauster, Daniel ; Klenk, Simon ; Ludwig, Kai ; Nojoumi, Saba ; Behren, Sandra ; Adam, Lutz ; Stadtmüller, Marlena ; Saenger, Sandra ; Zimmler, Stephanie ; Hönzke, Katja ; Yao, Ling ; Hoffmann, Ute ; Bardua, Markus ; Hamann, Alf ; Witzenrath, Martin ; Sander, Leif E. ; Wolff, Thorsten ; Hocke, Andreas C. ; Hippenstiel, Stefan ; De Carlo, Sacha ; Neudecker, Jens ; Osterrieder, Klaus ; Budisa, Nediljko ; Netz, Roland R. ; Böttcher, Christoph ; Liese, Susanne ; Herrmann, Andreas ; Hackenberger, Christian P. R.</creatorcontrib><description>Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion 1 – 4 . Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies 5 and peptides 6 or that address late steps of the viral replication cycle 7 . Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0660-2</identifier><identifier>PMID: 32231271</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/131 ; 631/61/350/354 ; 639/638 ; A549 Cells ; Adhesives ; Allolevivirus - metabolism ; Animals ; Binders ; Binding Sites ; Capsid - metabolism ; Capsids ; Cell adhesion ; Cell adhesion &amp; migration ; Chemistry and Materials Science ; Dogs ; Hemagglutinin Glycoproteins, Influenza Virus - metabolism ; Hemagglutinins ; Humans ; Infections ; Influenza ; Influenza A ; Influenza A virus - physiology ; Influenza, Human - metabolism ; Influenza, Human - prevention &amp; control ; Influenza, Human - virology ; Interfaces ; Letter ; Ligands ; Madin Darby Canine Kidney Cells ; Materials Science ; Models, Molecular ; Nanoparticles ; Nanoparticles - metabolism ; Nanoparticles - therapeutic use ; Nanotechnology ; Nanotechnology and Microengineering ; Orthomyxoviridae Infections - metabolism ; Orthomyxoviridae Infections - prevention &amp; control ; Orthomyxoviridae Infections - virology ; Pathogens ; Phages ; Proteins ; Spike protein ; Viral infections ; Virus Internalization ; Viruses</subject><ispartof>Nature nanotechnology, 2020-05, Vol.15 (5), p.373-379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</citedby><cites>FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</cites><orcidid>0000-0001-7420-5488 ; 0000-0002-6716-2026 ; 0000-0001-7457-4742 ; 0000-0001-7688-236X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-020-0660-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-020-0660-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauster, Daniel</creatorcontrib><creatorcontrib>Klenk, Simon</creatorcontrib><creatorcontrib>Ludwig, Kai</creatorcontrib><creatorcontrib>Nojoumi, Saba</creatorcontrib><creatorcontrib>Behren, Sandra</creatorcontrib><creatorcontrib>Adam, Lutz</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Saenger, Sandra</creatorcontrib><creatorcontrib>Zimmler, Stephanie</creatorcontrib><creatorcontrib>Hönzke, Katja</creatorcontrib><creatorcontrib>Yao, Ling</creatorcontrib><creatorcontrib>Hoffmann, Ute</creatorcontrib><creatorcontrib>Bardua, Markus</creatorcontrib><creatorcontrib>Hamann, Alf</creatorcontrib><creatorcontrib>Witzenrath, Martin</creatorcontrib><creatorcontrib>Sander, Leif E.</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Hocke, Andreas C.</creatorcontrib><creatorcontrib>Hippenstiel, Stefan</creatorcontrib><creatorcontrib>De Carlo, Sacha</creatorcontrib><creatorcontrib>Neudecker, Jens</creatorcontrib><creatorcontrib>Osterrieder, Klaus</creatorcontrib><creatorcontrib>Budisa, Nediljko</creatorcontrib><creatorcontrib>Netz, Roland R.</creatorcontrib><creatorcontrib>Böttcher, Christoph</creatorcontrib><creatorcontrib>Liese, Susanne</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><creatorcontrib>Hackenberger, Christian P. R.</creatorcontrib><title>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion 1 – 4 . Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies 5 and peptides 6 or that address late steps of the viral replication cycle 7 . Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.</description><subject>119/118</subject><subject>140/131</subject><subject>631/61/350/354</subject><subject>639/638</subject><subject>A549 Cells</subject><subject>Adhesives</subject><subject>Allolevivirus - metabolism</subject><subject>Animals</subject><subject>Binders</subject><subject>Binding Sites</subject><subject>Capsid - metabolism</subject><subject>Capsids</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Chemistry and Materials Science</subject><subject>Dogs</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</subject><subject>Hemagglutinins</subject><subject>Humans</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A virus - physiology</subject><subject>Influenza, Human - metabolism</subject><subject>Influenza, Human - prevention &amp; control</subject><subject>Influenza, Human - virology</subject><subject>Interfaces</subject><subject>Letter</subject><subject>Ligands</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Materials Science</subject><subject>Models, Molecular</subject><subject>Nanoparticles</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - therapeutic use</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Orthomyxoviridae Infections - metabolism</subject><subject>Orthomyxoviridae Infections - prevention &amp; control</subject><subject>Orthomyxoviridae Infections - virology</subject><subject>Pathogens</subject><subject>Phages</subject><subject>Proteins</subject><subject>Spike protein</subject><subject>Viral infections</subject><subject>Virus Internalization</subject><subject>Viruses</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAWyQJdYBvx0vUcVLQoIFsLWcxG5TUifYCah8PYlSygpWM9K9c0Y6AJxidIERTS8jw1zwBBGUICFQQvbAFEuWJpQqvr_bUzkBRzGuEOJEEXYIJpQQionEU_D6tDQLC3PTxLKA3vi6MaEt88pG-Fm2S1hYV3pbwKpcGF9AE4LxC7u2voVZVedvsPSu6qz_MvCjDF2EfRI2x-DAmSrak-2cgZeb6-f5XfLweHs_v3pIcsZom4gcOS6QM7hgVtHUKINUajCjDqe5UNJx6wolLZOoUAZTjnFGqFJcZFJyQWfgfOQ2oX7vbGz1qu6C719qwiRHHEtO_m-h3hJWbGDhsZWHOsZgnW5CuTZhozHSg289-ta9bz341gP5bEvusrUtdhc_gvsCGQuxj3px4ff139RvquuJtg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lauster, Daniel</creator><creator>Klenk, Simon</creator><creator>Ludwig, Kai</creator><creator>Nojoumi, Saba</creator><creator>Behren, Sandra</creator><creator>Adam, Lutz</creator><creator>Stadtmüller, Marlena</creator><creator>Saenger, Sandra</creator><creator>Zimmler, Stephanie</creator><creator>Hönzke, Katja</creator><creator>Yao, Ling</creator><creator>Hoffmann, Ute</creator><creator>Bardua, Markus</creator><creator>Hamann, Alf</creator><creator>Witzenrath, Martin</creator><creator>Sander, Leif E.</creator><creator>Wolff, Thorsten</creator><creator>Hocke, Andreas C.</creator><creator>Hippenstiel, Stefan</creator><creator>De Carlo, Sacha</creator><creator>Neudecker, Jens</creator><creator>Osterrieder, Klaus</creator><creator>Budisa, Nediljko</creator><creator>Netz, Roland R.</creator><creator>Böttcher, Christoph</creator><creator>Liese, Susanne</creator><creator>Herrmann, Andreas</creator><creator>Hackenberger, Christian P. R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7420-5488</orcidid><orcidid>https://orcid.org/0000-0002-6716-2026</orcidid><orcidid>https://orcid.org/0000-0001-7457-4742</orcidid><orcidid>https://orcid.org/0000-0001-7688-236X</orcidid></search><sort><creationdate>20200501</creationdate><title>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</title><author>Lauster, Daniel ; Klenk, Simon ; Ludwig, Kai ; Nojoumi, Saba ; Behren, Sandra ; Adam, Lutz ; Stadtmüller, Marlena ; Saenger, Sandra ; Zimmler, Stephanie ; Hönzke, Katja ; Yao, Ling ; Hoffmann, Ute ; Bardua, Markus ; Hamann, Alf ; Witzenrath, Martin ; Sander, Leif E. ; Wolff, Thorsten ; Hocke, Andreas C. ; Hippenstiel, Stefan ; De Carlo, Sacha ; Neudecker, Jens ; Osterrieder, Klaus ; Budisa, Nediljko ; Netz, Roland R. ; Böttcher, Christoph ; Liese, Susanne ; Herrmann, Andreas ; Hackenberger, Christian P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6c0f560fa1d4e938a9a098a143f18c697f5efd97e470d9a13511b239956b77563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>119/118</topic><topic>140/131</topic><topic>631/61/350/354</topic><topic>639/638</topic><topic>A549 Cells</topic><topic>Adhesives</topic><topic>Allolevivirus - metabolism</topic><topic>Animals</topic><topic>Binders</topic><topic>Binding Sites</topic><topic>Capsid - metabolism</topic><topic>Capsids</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Chemistry and Materials Science</topic><topic>Dogs</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</topic><topic>Hemagglutinins</topic><topic>Humans</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A virus - physiology</topic><topic>Influenza, Human - metabolism</topic><topic>Influenza, Human - prevention &amp; control</topic><topic>Influenza, Human - virology</topic><topic>Interfaces</topic><topic>Letter</topic><topic>Ligands</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Materials Science</topic><topic>Models, Molecular</topic><topic>Nanoparticles</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - therapeutic use</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Orthomyxoviridae Infections - metabolism</topic><topic>Orthomyxoviridae Infections - prevention &amp; control</topic><topic>Orthomyxoviridae Infections - virology</topic><topic>Pathogens</topic><topic>Phages</topic><topic>Proteins</topic><topic>Spike protein</topic><topic>Viral infections</topic><topic>Virus Internalization</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauster, Daniel</creatorcontrib><creatorcontrib>Klenk, Simon</creatorcontrib><creatorcontrib>Ludwig, Kai</creatorcontrib><creatorcontrib>Nojoumi, Saba</creatorcontrib><creatorcontrib>Behren, Sandra</creatorcontrib><creatorcontrib>Adam, Lutz</creatorcontrib><creatorcontrib>Stadtmüller, Marlena</creatorcontrib><creatorcontrib>Saenger, Sandra</creatorcontrib><creatorcontrib>Zimmler, Stephanie</creatorcontrib><creatorcontrib>Hönzke, Katja</creatorcontrib><creatorcontrib>Yao, Ling</creatorcontrib><creatorcontrib>Hoffmann, Ute</creatorcontrib><creatorcontrib>Bardua, Markus</creatorcontrib><creatorcontrib>Hamann, Alf</creatorcontrib><creatorcontrib>Witzenrath, Martin</creatorcontrib><creatorcontrib>Sander, Leif E.</creatorcontrib><creatorcontrib>Wolff, Thorsten</creatorcontrib><creatorcontrib>Hocke, Andreas C.</creatorcontrib><creatorcontrib>Hippenstiel, Stefan</creatorcontrib><creatorcontrib>De Carlo, Sacha</creatorcontrib><creatorcontrib>Neudecker, Jens</creatorcontrib><creatorcontrib>Osterrieder, Klaus</creatorcontrib><creatorcontrib>Budisa, Nediljko</creatorcontrib><creatorcontrib>Netz, Roland R.</creatorcontrib><creatorcontrib>Böttcher, Christoph</creatorcontrib><creatorcontrib>Liese, Susanne</creatorcontrib><creatorcontrib>Herrmann, Andreas</creatorcontrib><creatorcontrib>Hackenberger, Christian P. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauster, Daniel</au><au>Klenk, Simon</au><au>Ludwig, Kai</au><au>Nojoumi, Saba</au><au>Behren, Sandra</au><au>Adam, Lutz</au><au>Stadtmüller, Marlena</au><au>Saenger, Sandra</au><au>Zimmler, Stephanie</au><au>Hönzke, Katja</au><au>Yao, Ling</au><au>Hoffmann, Ute</au><au>Bardua, Markus</au><au>Hamann, Alf</au><au>Witzenrath, Martin</au><au>Sander, Leif E.</au><au>Wolff, Thorsten</au><au>Hocke, Andreas C.</au><au>Hippenstiel, Stefan</au><au>De Carlo, Sacha</au><au>Neudecker, Jens</au><au>Osterrieder, Klaus</au><au>Budisa, Nediljko</au><au>Netz, Roland R.</au><au>Böttcher, Christoph</au><au>Liese, Susanne</au><au>Herrmann, Andreas</au><au>Hackenberger, Christian P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>373</spage><epage>379</epage><pages>373-379</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion 1 – 4 . Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies 5 and peptides 6 or that address late steps of the viral replication cycle 7 . Phage capsids modified with spatially defined patterns of host cell ligands can act as multivalent binders for the influenza A virus to prevent viral infection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32231271</pmid><doi>10.1038/s41565-020-0660-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7420-5488</orcidid><orcidid>https://orcid.org/0000-0002-6716-2026</orcidid><orcidid>https://orcid.org/0000-0001-7457-4742</orcidid><orcidid>https://orcid.org/0000-0001-7688-236X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2020-05, Vol.15 (5), p.373-379
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_2475051752
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 119/118
140/131
631/61/350/354
639/638
A549 Cells
Adhesives
Allolevivirus - metabolism
Animals
Binders
Binding Sites
Capsid - metabolism
Capsids
Cell adhesion
Cell adhesion & migration
Chemistry and Materials Science
Dogs
Hemagglutinin Glycoproteins, Influenza Virus - metabolism
Hemagglutinins
Humans
Infections
Influenza
Influenza A
Influenza A virus - physiology
Influenza, Human - metabolism
Influenza, Human - prevention & control
Influenza, Human - virology
Interfaces
Letter
Ligands
Madin Darby Canine Kidney Cells
Materials Science
Models, Molecular
Nanoparticles
Nanoparticles - metabolism
Nanoparticles - therapeutic use
Nanotechnology
Nanotechnology and Microengineering
Orthomyxoviridae Infections - metabolism
Orthomyxoviridae Infections - prevention & control
Orthomyxoviridae Infections - virology
Pathogens
Phages
Proteins
Spike protein
Viral infections
Virus Internalization
Viruses
title Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phage%20capsid%20nanoparticles%20with%20defined%20ligand%20arrangement%20block%20influenza%20virus%20entry&rft.jtitle=Nature%20nanotechnology&rft.au=Lauster,%20Daniel&rft.date=2020-05-01&rft.volume=15&rft.issue=5&rft.spage=373&rft.epage=379&rft.pages=373-379&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0660-2&rft_dat=%3Cproquest_cross%3E2475051752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401741946&rft_id=info:pmid/32231271&rfr_iscdi=true