Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science
The availability of high-energy pulses with durations shorter than the period of their carrier frequency (sub-cycle) will reveal new regimes of strong-field light–matter interactions. Parametric waveform synthesis (that is, the coherent combination of carrier-envelope-phase-stable pulses that emerge...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2020-10, Vol.14 (10), p.629-635 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 635 |
---|---|
container_issue | 10 |
container_start_page | 629 |
container_title | Nature photonics |
container_volume | 14 |
creator | Rossi, Giulio Maria Mainz, Roland E. Yang, Yudong Scheiba, Fabian Silva-Toledo, Miguel A. Chia, Shih-Hsuan Keathley, Phillip D. Fang, Shaobo Mücke, Oliver D. Manzoni, Cristian Cerullo, Giulio Cirmi, Giovanni Kärtner, Franz X. |
description | The availability of high-energy pulses with durations shorter than the period of their carrier frequency (sub-cycle) will reveal new regimes of strong-field light–matter interactions. Parametric waveform synthesis (that is, the coherent combination of carrier-envelope-phase-stable pulses that emerge from different optical parametric amplifiers) is a promising technology for the realization of tailored optical waveforms with scalable spectral bandwidth, energy and average power. Here we use parametric waveform synthesis to generate phase-controlled sub-cycle waveforms at the millijoule energy level with excellent stability. Full control over the synthesized waveforms (currently spanning 1.7 octaves with full-width at half-maximum durations down to 2.8 fs, that is, 0.6 optical cycles at a central wavelength of 1.4 μm) enables the creation of extreme ultraviolet isolated attosecond pulses via high-harmonic generation without the need for additional gating techniques. The synthesized electric field is directly measured by attosecond-resolution sampling, which also showcases the waveform stability.
Optical waveforms with a 1.7 octave spectrum and 0.6 optical cycle duration are generated at a central wavelength of 1.4 μm by parametric waveform synthesis. The output pulse energies amount to >500 μJ with fluctuations of 1% r.m.s. over 1,000 shots. |
doi_str_mv | 10.1038/s41566-020-0659-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2475045742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475045742</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-adf893df2414c9f82ff3d2349b93c44d423f361421e13a1e21e3080b61581d43</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKs_wF3AdfTmNZ0spfiCgojdhzRzo1PSmTGZVvTXm1LR1TlcDucePkIuOVxzkPVNVlxXFQMBDCptGByRCZ8pw1Rt5PGfr_UpOct5DaClEWJCXl63K-a_fES6aWNs1_02Iou4w0gHl9wGx9R6-ul2GPq0ofmrG98xt9-YaDlQN459Rt93Dc2-xc7jOTkJLma8-NUpWd7fLeePbPH88DS_XbChLB2Za0JZ1gShuPIm1CIE2QipzMpIr1SjhAyy4kpw5NJxLCqhhlXFdc0bJafk6lA7pP5ji3m0ZXrqykcr1EyD0rNSMSXikMpDars3TP8pDnZPzh7I2ULO7slZkD-DIWG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475045742</pqid></control><display><type>article</type><title>Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Rossi, Giulio Maria ; Mainz, Roland E. ; Yang, Yudong ; Scheiba, Fabian ; Silva-Toledo, Miguel A. ; Chia, Shih-Hsuan ; Keathley, Phillip D. ; Fang, Shaobo ; Mücke, Oliver D. ; Manzoni, Cristian ; Cerullo, Giulio ; Cirmi, Giovanni ; Kärtner, Franz X.</creator><creatorcontrib>Rossi, Giulio Maria ; Mainz, Roland E. ; Yang, Yudong ; Scheiba, Fabian ; Silva-Toledo, Miguel A. ; Chia, Shih-Hsuan ; Keathley, Phillip D. ; Fang, Shaobo ; Mücke, Oliver D. ; Manzoni, Cristian ; Cerullo, Giulio ; Cirmi, Giovanni ; Kärtner, Franz X.</creatorcontrib><description>The availability of high-energy pulses with durations shorter than the period of their carrier frequency (sub-cycle) will reveal new regimes of strong-field light–matter interactions. Parametric waveform synthesis (that is, the coherent combination of carrier-envelope-phase-stable pulses that emerge from different optical parametric amplifiers) is a promising technology for the realization of tailored optical waveforms with scalable spectral bandwidth, energy and average power. Here we use parametric waveform synthesis to generate phase-controlled sub-cycle waveforms at the millijoule energy level with excellent stability. Full control over the synthesized waveforms (currently spanning 1.7 octaves with full-width at half-maximum durations down to 2.8 fs, that is, 0.6 optical cycles at a central wavelength of 1.4 μm) enables the creation of extreme ultraviolet isolated attosecond pulses via high-harmonic generation without the need for additional gating techniques. The synthesized electric field is directly measured by attosecond-resolution sampling, which also showcases the waveform stability.
Optical waveforms with a 1.7 octave spectrum and 0.6 optical cycle duration are generated at a central wavelength of 1.4 μm by parametric waveform synthesis. The output pulse energies amount to >500 μJ with fluctuations of 1% r.m.s. over 1,000 shots.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0659-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1095 ; 639/624/400/385 ; 639/766/400/3923 ; Applied and Technical Physics ; Attosecond pulses ; Carrier frequencies ; Control stability ; Electric fields ; Energy ; Energy levels ; Gating ; Harmonic generations ; Octaves ; Parametric amplifiers ; Physics ; Physics and Astronomy ; Quantum Physics ; Synthesis ; Waveforms ; Wavelength</subject><ispartof>Nature photonics, 2020-10, Vol.14 (10), p.629-635</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3944-1968 ; 0000-0002-4169-8869 ; 0000-0001-6964-1816 ; 0000-0002-6606-6147 ; 0000-0002-6435-353X ; 0000-0003-1325-1768 ; 0000-0002-9534-2702 ; 0000-0003-2420-4107 ; 0000-0002-7841-3679 ; 0000-0002-8546-8678 ; 0000-0003-0672-5865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rossi, Giulio Maria</creatorcontrib><creatorcontrib>Mainz, Roland E.</creatorcontrib><creatorcontrib>Yang, Yudong</creatorcontrib><creatorcontrib>Scheiba, Fabian</creatorcontrib><creatorcontrib>Silva-Toledo, Miguel A.</creatorcontrib><creatorcontrib>Chia, Shih-Hsuan</creatorcontrib><creatorcontrib>Keathley, Phillip D.</creatorcontrib><creatorcontrib>Fang, Shaobo</creatorcontrib><creatorcontrib>Mücke, Oliver D.</creatorcontrib><creatorcontrib>Manzoni, Cristian</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Cirmi, Giovanni</creatorcontrib><creatorcontrib>Kärtner, Franz X.</creatorcontrib><title>Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>The availability of high-energy pulses with durations shorter than the period of their carrier frequency (sub-cycle) will reveal new regimes of strong-field light–matter interactions. Parametric waveform synthesis (that is, the coherent combination of carrier-envelope-phase-stable pulses that emerge from different optical parametric amplifiers) is a promising technology for the realization of tailored optical waveforms with scalable spectral bandwidth, energy and average power. Here we use parametric waveform synthesis to generate phase-controlled sub-cycle waveforms at the millijoule energy level with excellent stability. Full control over the synthesized waveforms (currently spanning 1.7 octaves with full-width at half-maximum durations down to 2.8 fs, that is, 0.6 optical cycles at a central wavelength of 1.4 μm) enables the creation of extreme ultraviolet isolated attosecond pulses via high-harmonic generation without the need for additional gating techniques. The synthesized electric field is directly measured by attosecond-resolution sampling, which also showcases the waveform stability.
Optical waveforms with a 1.7 octave spectrum and 0.6 optical cycle duration are generated at a central wavelength of 1.4 μm by parametric waveform synthesis. The output pulse energies amount to >500 μJ with fluctuations of 1% r.m.s. over 1,000 shots.</description><subject>639/624/1020/1095</subject><subject>639/624/400/385</subject><subject>639/766/400/3923</subject><subject>Applied and Technical Physics</subject><subject>Attosecond pulses</subject><subject>Carrier frequencies</subject><subject>Control stability</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Gating</subject><subject>Harmonic generations</subject><subject>Octaves</subject><subject>Parametric amplifiers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Synthesis</subject><subject>Waveforms</subject><subject>Wavelength</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkEtLAzEUhYMoWKs_wF3AdfTmNZ0spfiCgojdhzRzo1PSmTGZVvTXm1LR1TlcDucePkIuOVxzkPVNVlxXFQMBDCptGByRCZ8pw1Rt5PGfr_UpOct5DaClEWJCXl63K-a_fES6aWNs1_02Iou4w0gHl9wGx9R6-ul2GPq0ofmrG98xt9-YaDlQN459Rt93Dc2-xc7jOTkJLma8-NUpWd7fLeePbPH88DS_XbChLB2Za0JZ1gShuPIm1CIE2QipzMpIr1SjhAyy4kpw5NJxLCqhhlXFdc0bJafk6lA7pP5ji3m0ZXrqykcr1EyD0rNSMSXikMpDars3TP8pDnZPzh7I2ULO7slZkD-DIWG0</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Rossi, Giulio Maria</creator><creator>Mainz, Roland E.</creator><creator>Yang, Yudong</creator><creator>Scheiba, Fabian</creator><creator>Silva-Toledo, Miguel A.</creator><creator>Chia, Shih-Hsuan</creator><creator>Keathley, Phillip D.</creator><creator>Fang, Shaobo</creator><creator>Mücke, Oliver D.</creator><creator>Manzoni, Cristian</creator><creator>Cerullo, Giulio</creator><creator>Cirmi, Giovanni</creator><creator>Kärtner, Franz X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3944-1968</orcidid><orcidid>https://orcid.org/0000-0002-4169-8869</orcidid><orcidid>https://orcid.org/0000-0001-6964-1816</orcidid><orcidid>https://orcid.org/0000-0002-6606-6147</orcidid><orcidid>https://orcid.org/0000-0002-6435-353X</orcidid><orcidid>https://orcid.org/0000-0003-1325-1768</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0003-2420-4107</orcidid><orcidid>https://orcid.org/0000-0002-7841-3679</orcidid><orcidid>https://orcid.org/0000-0002-8546-8678</orcidid><orcidid>https://orcid.org/0000-0003-0672-5865</orcidid></search><sort><creationdate>20201001</creationdate><title>Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science</title><author>Rossi, Giulio Maria ; Mainz, Roland E. ; Yang, Yudong ; Scheiba, Fabian ; Silva-Toledo, Miguel A. ; Chia, Shih-Hsuan ; Keathley, Phillip D. ; Fang, Shaobo ; Mücke, Oliver D. ; Manzoni, Cristian ; Cerullo, Giulio ; Cirmi, Giovanni ; Kärtner, Franz X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-adf893df2414c9f82ff3d2349b93c44d423f361421e13a1e21e3080b61581d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/1020/1095</topic><topic>639/624/400/385</topic><topic>639/766/400/3923</topic><topic>Applied and Technical Physics</topic><topic>Attosecond pulses</topic><topic>Carrier frequencies</topic><topic>Control stability</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Gating</topic><topic>Harmonic generations</topic><topic>Octaves</topic><topic>Parametric amplifiers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Synthesis</topic><topic>Waveforms</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, Giulio Maria</creatorcontrib><creatorcontrib>Mainz, Roland E.</creatorcontrib><creatorcontrib>Yang, Yudong</creatorcontrib><creatorcontrib>Scheiba, Fabian</creatorcontrib><creatorcontrib>Silva-Toledo, Miguel A.</creatorcontrib><creatorcontrib>Chia, Shih-Hsuan</creatorcontrib><creatorcontrib>Keathley, Phillip D.</creatorcontrib><creatorcontrib>Fang, Shaobo</creatorcontrib><creatorcontrib>Mücke, Oliver D.</creatorcontrib><creatorcontrib>Manzoni, Cristian</creatorcontrib><creatorcontrib>Cerullo, Giulio</creatorcontrib><creatorcontrib>Cirmi, Giovanni</creatorcontrib><creatorcontrib>Kärtner, Franz X.</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, Giulio Maria</au><au>Mainz, Roland E.</au><au>Yang, Yudong</au><au>Scheiba, Fabian</au><au>Silva-Toledo, Miguel A.</au><au>Chia, Shih-Hsuan</au><au>Keathley, Phillip D.</au><au>Fang, Shaobo</au><au>Mücke, Oliver D.</au><au>Manzoni, Cristian</au><au>Cerullo, Giulio</au><au>Cirmi, Giovanni</au><au>Kärtner, Franz X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>629</spage><epage>635</epage><pages>629-635</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The availability of high-energy pulses with durations shorter than the period of their carrier frequency (sub-cycle) will reveal new regimes of strong-field light–matter interactions. Parametric waveform synthesis (that is, the coherent combination of carrier-envelope-phase-stable pulses that emerge from different optical parametric amplifiers) is a promising technology for the realization of tailored optical waveforms with scalable spectral bandwidth, energy and average power. Here we use parametric waveform synthesis to generate phase-controlled sub-cycle waveforms at the millijoule energy level with excellent stability. Full control over the synthesized waveforms (currently spanning 1.7 octaves with full-width at half-maximum durations down to 2.8 fs, that is, 0.6 optical cycles at a central wavelength of 1.4 μm) enables the creation of extreme ultraviolet isolated attosecond pulses via high-harmonic generation without the need for additional gating techniques. The synthesized electric field is directly measured by attosecond-resolution sampling, which also showcases the waveform stability.
Optical waveforms with a 1.7 octave spectrum and 0.6 optical cycle duration are generated at a central wavelength of 1.4 μm by parametric waveform synthesis. The output pulse energies amount to >500 μJ with fluctuations of 1% r.m.s. over 1,000 shots.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0659-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3944-1968</orcidid><orcidid>https://orcid.org/0000-0002-4169-8869</orcidid><orcidid>https://orcid.org/0000-0001-6964-1816</orcidid><orcidid>https://orcid.org/0000-0002-6606-6147</orcidid><orcidid>https://orcid.org/0000-0002-6435-353X</orcidid><orcidid>https://orcid.org/0000-0003-1325-1768</orcidid><orcidid>https://orcid.org/0000-0002-9534-2702</orcidid><orcidid>https://orcid.org/0000-0003-2420-4107</orcidid><orcidid>https://orcid.org/0000-0002-7841-3679</orcidid><orcidid>https://orcid.org/0000-0002-8546-8678</orcidid><orcidid>https://orcid.org/0000-0003-0672-5865</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2020-10, Vol.14 (10), p.629-635 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2475045742 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/1020/1095 639/624/400/385 639/766/400/3923 Applied and Technical Physics Attosecond pulses Carrier frequencies Control stability Electric fields Energy Energy levels Gating Harmonic generations Octaves Parametric amplifiers Physics Physics and Astronomy Quantum Physics Synthesis Waveforms Wavelength |
title | Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-cycle%20millijoule-level%20parametric%20waveform%20synthesizer%20for%20attosecond%20science&rft.jtitle=Nature%20photonics&rft.au=Rossi,%20Giulio%20Maria&rft.date=2020-10-01&rft.volume=14&rft.issue=10&rft.spage=629&rft.epage=635&rft.pages=629-635&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0659-0&rft_dat=%3Cproquest_sprin%3E2475045742%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475045742&rft_id=info:pmid/&rfr_iscdi=true |