Organic light emitters exhibiting very fast reverse intersystem crossing
Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S 1 ) and lowest triplet state (T 1 ) in thermally activated delayed fluorescence systems. However, di...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2020-10, Vol.14 (10), p.643-649 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 649 |
---|---|
container_issue | 10 |
container_start_page | 643 |
container_title | Nature photonics |
container_volume | 14 |
creator | Wada, Yoshimasa Nakagawa, Hiromichi Matsumoto, Soma Wakisaka, Yasuaki Kaji, Hironori |
description | Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S
1
) and lowest triplet state (T
1
) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T
1
to S
1
is still inefficient when both states are of the same charge transfer (CT) nature (that is,
3
CT and
1
CT, respectively). Intervention of locally excited triplet states (
3
LE) between
3
CT and
1
CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate
1
CT,
3
CT and
3
LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant (
k
RISC
) of 1.2 × 10
7
s
−1
, resulting in organic light-emitting diodes with excellent performance, particularly at high brightness.
An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes. |
doi_str_mv | 10.1038/s41566-020-0667-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475044721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475044721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ6M384SVUCRKnUDayuPSeqqTYvtIvr3JA2CFauZxbl3RoeQWwb3DIR9iJIprTPgkIHWJoMzMmFG5pm0uTj_3a26JFcxrgGUyDmfkPkytEXnK7rx7SpR3PqUMESKXytf-uS7ln5iONKmiIkG7PeI1HcDc4wJt7QKuxh77JpcNMUm4s3PnJL356e32TxbLF9eZ4-LrBKWp0xIq0qdl5YXeV3Xpi6xBMtU0RQguBFcoGYW0DZacMkt1wYsMsWgqpkWTEzJ3di7D7uPA8bk1rtD6PqTjkujQErDB4qN1Om9gI3bB78twtExcIMwNwpzvTA3CHPQZ_iYiT3btRj-mv8PfQNsom2J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475044721</pqid></control><display><type>article</type><title>Organic light emitters exhibiting very fast reverse intersystem crossing</title><source>Nature</source><source>SpringerLink (Online service)</source><creator>Wada, Yoshimasa ; Nakagawa, Hiromichi ; Matsumoto, Soma ; Wakisaka, Yasuaki ; Kaji, Hironori</creator><creatorcontrib>Wada, Yoshimasa ; Nakagawa, Hiromichi ; Matsumoto, Soma ; Wakisaka, Yasuaki ; Kaji, Hironori</creatorcontrib><description>Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S
1
) and lowest triplet state (T
1
) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T
1
to S
1
is still inefficient when both states are of the same charge transfer (CT) nature (that is,
3
CT and
1
CT, respectively). Intervention of locally excited triplet states (
3
LE) between
3
CT and
1
CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate
1
CT,
3
CT and
3
LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant (
k
RISC
) of 1.2 × 10
7
s
−1
, resulting in organic light-emitting diodes with excellent performance, particularly at high brightness.
An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0667-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/301/1019/1020/1091 ; 639/624/1075/401 ; 639/638/298/398 ; Applied and Technical Physics ; Atomic energy levels ; Charge transfer ; Emitters ; Energy gap ; Fabrication ; Fluorescence ; Light emitting diodes ; Organic chemistry ; Organic light emitting diodes ; Organic materials ; Physics ; Physics and Astronomy ; Quantum Physics ; Triplet state</subject><ispartof>Nature photonics, 2020-10, Vol.14 (10), p.643-649</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</citedby><cites>FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</cites><orcidid>0000-0002-5111-3852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-020-0667-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-020-0667-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wada, Yoshimasa</creatorcontrib><creatorcontrib>Nakagawa, Hiromichi</creatorcontrib><creatorcontrib>Matsumoto, Soma</creatorcontrib><creatorcontrib>Wakisaka, Yasuaki</creatorcontrib><creatorcontrib>Kaji, Hironori</creatorcontrib><title>Organic light emitters exhibiting very fast reverse intersystem crossing</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S
1
) and lowest triplet state (T
1
) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T
1
to S
1
is still inefficient when both states are of the same charge transfer (CT) nature (that is,
3
CT and
1
CT, respectively). Intervention of locally excited triplet states (
3
LE) between
3
CT and
1
CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate
1
CT,
3
CT and
3
LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant (
k
RISC
) of 1.2 × 10
7
s
−1
, resulting in organic light-emitting diodes with excellent performance, particularly at high brightness.
An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.</description><subject>140/131</subject><subject>639/301/1019/1020/1091</subject><subject>639/624/1075/401</subject><subject>639/638/298/398</subject><subject>Applied and Technical Physics</subject><subject>Atomic energy levels</subject><subject>Charge transfer</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Fabrication</subject><subject>Fluorescence</subject><subject>Light emitting diodes</subject><subject>Organic chemistry</subject><subject>Organic light emitting diodes</subject><subject>Organic materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Triplet state</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ6M384SVUCRKnUDayuPSeqqTYvtIvr3JA2CFauZxbl3RoeQWwb3DIR9iJIprTPgkIHWJoMzMmFG5pm0uTj_3a26JFcxrgGUyDmfkPkytEXnK7rx7SpR3PqUMESKXytf-uS7ln5iONKmiIkG7PeI1HcDc4wJt7QKuxh77JpcNMUm4s3PnJL356e32TxbLF9eZ4-LrBKWp0xIq0qdl5YXeV3Xpi6xBMtU0RQguBFcoGYW0DZacMkt1wYsMsWgqpkWTEzJ3di7D7uPA8bk1rtD6PqTjkujQErDB4qN1Om9gI3bB78twtExcIMwNwpzvTA3CHPQZ_iYiT3btRj-mv8PfQNsom2J</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wada, Yoshimasa</creator><creator>Nakagawa, Hiromichi</creator><creator>Matsumoto, Soma</creator><creator>Wakisaka, Yasuaki</creator><creator>Kaji, Hironori</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5111-3852</orcidid></search><sort><creationdate>20201001</creationdate><title>Organic light emitters exhibiting very fast reverse intersystem crossing</title><author>Wada, Yoshimasa ; Nakagawa, Hiromichi ; Matsumoto, Soma ; Wakisaka, Yasuaki ; Kaji, Hironori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/131</topic><topic>639/301/1019/1020/1091</topic><topic>639/624/1075/401</topic><topic>639/638/298/398</topic><topic>Applied and Technical Physics</topic><topic>Atomic energy levels</topic><topic>Charge transfer</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Fabrication</topic><topic>Fluorescence</topic><topic>Light emitting diodes</topic><topic>Organic chemistry</topic><topic>Organic light emitting diodes</topic><topic>Organic materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Triplet state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wada, Yoshimasa</creatorcontrib><creatorcontrib>Nakagawa, Hiromichi</creatorcontrib><creatorcontrib>Matsumoto, Soma</creatorcontrib><creatorcontrib>Wakisaka, Yasuaki</creatorcontrib><creatorcontrib>Kaji, Hironori</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wada, Yoshimasa</au><au>Nakagawa, Hiromichi</au><au>Matsumoto, Soma</au><au>Wakisaka, Yasuaki</au><au>Kaji, Hironori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic light emitters exhibiting very fast reverse intersystem crossing</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>643</spage><epage>649</epage><pages>643-649</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S
1
) and lowest triplet state (T
1
) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T
1
to S
1
is still inefficient when both states are of the same charge transfer (CT) nature (that is,
3
CT and
1
CT, respectively). Intervention of locally excited triplet states (
3
LE) between
3
CT and
1
CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate
1
CT,
3
CT and
3
LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant (
k
RISC
) of 1.2 × 10
7
s
−1
, resulting in organic light-emitting diodes with excellent performance, particularly at high brightness.
An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0667-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5111-3852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2020-10, Vol.14 (10), p.643-649 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2475044721 |
source | Nature; SpringerLink (Online service) |
subjects | 140/131 639/301/1019/1020/1091 639/624/1075/401 639/638/298/398 Applied and Technical Physics Atomic energy levels Charge transfer Emitters Energy gap Fabrication Fluorescence Light emitting diodes Organic chemistry Organic light emitting diodes Organic materials Physics Physics and Astronomy Quantum Physics Triplet state |
title | Organic light emitters exhibiting very fast reverse intersystem crossing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20light%20emitters%20exhibiting%20very%20fast%20reverse%20intersystem%20crossing&rft.jtitle=Nature%20photonics&rft.au=Wada,%20Yoshimasa&rft.date=2020-10-01&rft.volume=14&rft.issue=10&rft.spage=643&rft.epage=649&rft.pages=643-649&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0667-0&rft_dat=%3Cproquest_cross%3E2475044721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475044721&rft_id=info:pmid/&rfr_iscdi=true |