Organic light emitters exhibiting very fast reverse intersystem crossing

Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S 1 ) and lowest triplet state (T 1 ) in thermally activated delayed fluorescence systems. However, di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2020-10, Vol.14 (10), p.643-649
Hauptverfasser: Wada, Yoshimasa, Nakagawa, Hiromichi, Matsumoto, Soma, Wakisaka, Yasuaki, Kaji, Hironori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 649
container_issue 10
container_start_page 643
container_title Nature photonics
container_volume 14
creator Wada, Yoshimasa
Nakagawa, Hiromichi
Matsumoto, Soma
Wakisaka, Yasuaki
Kaji, Hironori
description Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S 1 ) and lowest triplet state (T 1 ) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T 1 to S 1 is still inefficient when both states are of the same charge transfer (CT) nature (that is, 3 CT and 1 CT, respectively). Intervention of locally excited triplet states ( 3 LE) between 3 CT and 1 CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate 1 CT, 3 CT and 3 LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant ( k RISC ) of 1.2 × 10 7  s −1 , resulting in organic light-emitting diodes with excellent performance, particularly at high brightness. An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.
doi_str_mv 10.1038/s41566-020-0667-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2475044721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475044721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ6M384SVUCRKnUDayuPSeqqTYvtIvr3JA2CFauZxbl3RoeQWwb3DIR9iJIprTPgkIHWJoMzMmFG5pm0uTj_3a26JFcxrgGUyDmfkPkytEXnK7rx7SpR3PqUMESKXytf-uS7ln5iONKmiIkG7PeI1HcDc4wJt7QKuxh77JpcNMUm4s3PnJL356e32TxbLF9eZ4-LrBKWp0xIq0qdl5YXeV3Xpi6xBMtU0RQguBFcoGYW0DZacMkt1wYsMsWgqpkWTEzJ3di7D7uPA8bk1rtD6PqTjkujQErDB4qN1Om9gI3bB78twtExcIMwNwpzvTA3CHPQZ_iYiT3btRj-mv8PfQNsom2J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475044721</pqid></control><display><type>article</type><title>Organic light emitters exhibiting very fast reverse intersystem crossing</title><source>Nature</source><source>SpringerLink (Online service)</source><creator>Wada, Yoshimasa ; Nakagawa, Hiromichi ; Matsumoto, Soma ; Wakisaka, Yasuaki ; Kaji, Hironori</creator><creatorcontrib>Wada, Yoshimasa ; Nakagawa, Hiromichi ; Matsumoto, Soma ; Wakisaka, Yasuaki ; Kaji, Hironori</creatorcontrib><description>Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S 1 ) and lowest triplet state (T 1 ) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T 1 to S 1 is still inefficient when both states are of the same charge transfer (CT) nature (that is, 3 CT and 1 CT, respectively). Intervention of locally excited triplet states ( 3 LE) between 3 CT and 1 CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate 1 CT, 3 CT and 3 LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant ( k RISC ) of 1.2 × 10 7  s −1 , resulting in organic light-emitting diodes with excellent performance, particularly at high brightness. An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0667-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/301/1019/1020/1091 ; 639/624/1075/401 ; 639/638/298/398 ; Applied and Technical Physics ; Atomic energy levels ; Charge transfer ; Emitters ; Energy gap ; Fabrication ; Fluorescence ; Light emitting diodes ; Organic chemistry ; Organic light emitting diodes ; Organic materials ; Physics ; Physics and Astronomy ; Quantum Physics ; Triplet state</subject><ispartof>Nature photonics, 2020-10, Vol.14 (10), p.643-649</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</citedby><cites>FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</cites><orcidid>0000-0002-5111-3852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-020-0667-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-020-0667-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wada, Yoshimasa</creatorcontrib><creatorcontrib>Nakagawa, Hiromichi</creatorcontrib><creatorcontrib>Matsumoto, Soma</creatorcontrib><creatorcontrib>Wakisaka, Yasuaki</creatorcontrib><creatorcontrib>Kaji, Hironori</creatorcontrib><title>Organic light emitters exhibiting very fast reverse intersystem crossing</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S 1 ) and lowest triplet state (T 1 ) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T 1 to S 1 is still inefficient when both states are of the same charge transfer (CT) nature (that is, 3 CT and 1 CT, respectively). Intervention of locally excited triplet states ( 3 LE) between 3 CT and 1 CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate 1 CT, 3 CT and 3 LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant ( k RISC ) of 1.2 × 10 7  s −1 , resulting in organic light-emitting diodes with excellent performance, particularly at high brightness. An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.</description><subject>140/131</subject><subject>639/301/1019/1020/1091</subject><subject>639/624/1075/401</subject><subject>639/638/298/398</subject><subject>Applied and Technical Physics</subject><subject>Atomic energy levels</subject><subject>Charge transfer</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Fabrication</subject><subject>Fluorescence</subject><subject>Light emitting diodes</subject><subject>Organic chemistry</subject><subject>Organic light emitting diodes</subject><subject>Organic materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Triplet state</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ6M384SVUCRKnUDayuPSeqqTYvtIvr3JA2CFauZxbl3RoeQWwb3DIR9iJIprTPgkIHWJoMzMmFG5pm0uTj_3a26JFcxrgGUyDmfkPkytEXnK7rx7SpR3PqUMESKXytf-uS7ln5iONKmiIkG7PeI1HcDc4wJt7QKuxh77JpcNMUm4s3PnJL356e32TxbLF9eZ4-LrBKWp0xIq0qdl5YXeV3Xpi6xBMtU0RQguBFcoGYW0DZacMkt1wYsMsWgqpkWTEzJ3di7D7uPA8bk1rtD6PqTjkujQErDB4qN1Om9gI3bB78twtExcIMwNwpzvTA3CHPQZ_iYiT3btRj-mv8PfQNsom2J</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wada, Yoshimasa</creator><creator>Nakagawa, Hiromichi</creator><creator>Matsumoto, Soma</creator><creator>Wakisaka, Yasuaki</creator><creator>Kaji, Hironori</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5111-3852</orcidid></search><sort><creationdate>20201001</creationdate><title>Organic light emitters exhibiting very fast reverse intersystem crossing</title><author>Wada, Yoshimasa ; Nakagawa, Hiromichi ; Matsumoto, Soma ; Wakisaka, Yasuaki ; Kaji, Hironori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3485b69b82a9ddd7dbeb0815afa0327323e6180e8f63242826708e1510cd16313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/131</topic><topic>639/301/1019/1020/1091</topic><topic>639/624/1075/401</topic><topic>639/638/298/398</topic><topic>Applied and Technical Physics</topic><topic>Atomic energy levels</topic><topic>Charge transfer</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Fabrication</topic><topic>Fluorescence</topic><topic>Light emitting diodes</topic><topic>Organic chemistry</topic><topic>Organic light emitting diodes</topic><topic>Organic materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Triplet state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wada, Yoshimasa</creatorcontrib><creatorcontrib>Nakagawa, Hiromichi</creatorcontrib><creatorcontrib>Matsumoto, Soma</creatorcontrib><creatorcontrib>Wakisaka, Yasuaki</creatorcontrib><creatorcontrib>Kaji, Hironori</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wada, Yoshimasa</au><au>Nakagawa, Hiromichi</au><au>Matsumoto, Soma</au><au>Wakisaka, Yasuaki</au><au>Kaji, Hironori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic light emitters exhibiting very fast reverse intersystem crossing</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>10</issue><spage>643</spage><epage>649</epage><pages>643-649</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Reverse intersystem crossing (RISC), originally considered forbidden in purely organic materials, has recently become possible by minimizing the energy gap between the lowest excited singlet state (S 1 ) and lowest triplet state (T 1 ) in thermally activated delayed fluorescence systems. However, direct spin-inversion from T 1 to S 1 is still inefficient when both states are of the same charge transfer (CT) nature (that is, 3 CT and 1 CT, respectively). Intervention of locally excited triplet states ( 3 LE) between 3 CT and 1 CT is expected to trigger fast spin-flipping. Here, we report the systematic design of ideal thermally activated delayed fluorescence molecules with near-degenerate 1 CT, 3 CT and 3 LE states by controlling the distance between the donor and acceptor segments in a molecule with tilted intersegment angles. This system realizes very fast RISC with a rate constant ( k RISC ) of 1.2 × 10 7  s −1 , resulting in organic light-emitting diodes with excellent performance, particularly at high brightness. An organic molecule, TpAT-tFFO, which is designed to support rapid reverse intersystem crossing allows the fabrication of efficient organic light-emitting diodes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0667-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5111-3852</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2020-10, Vol.14 (10), p.643-649
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2475044721
source Nature; SpringerLink (Online service)
subjects 140/131
639/301/1019/1020/1091
639/624/1075/401
639/638/298/398
Applied and Technical Physics
Atomic energy levels
Charge transfer
Emitters
Energy gap
Fabrication
Fluorescence
Light emitting diodes
Organic chemistry
Organic light emitting diodes
Organic materials
Physics
Physics and Astronomy
Quantum Physics
Triplet state
title Organic light emitters exhibiting very fast reverse intersystem crossing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20light%20emitters%20exhibiting%20very%20fast%20reverse%20intersystem%20crossing&rft.jtitle=Nature%20photonics&rft.au=Wada,%20Yoshimasa&rft.date=2020-10-01&rft.volume=14&rft.issue=10&rft.spage=643&rft.epage=649&rft.pages=643-649&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0667-0&rft_dat=%3Cproquest_cross%3E2475044721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475044721&rft_id=info:pmid/&rfr_iscdi=true