Layer-resolved magnetic proximity effect in van der Waals heterostructures

Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-03, Vol.15 (3), p.187-191
Hauptverfasser: Zhong, Ding, Seyler, Kyle L., Linpeng, Xiayu, Wilson, Nathan P., Taniguchi, Takashi, Watanabe, Kenji, McGuire, Michael A., Fu, Kai-Mei C., Xiao, Di, Yao, Wang, Xu, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 3
container_start_page 187
container_title Nature nanotechnology
container_volume 15
creator Zhong, Ding
Seyler, Kyle L.
Linpeng, Xiayu
Wilson, Nathan P.
Taniguchi, Takashi
Watanabe, Kenji
McGuire, Michael A.
Fu, Kai-Mei C.
Xiao, Di
Yao, Wang
Xu, Xiaodong
description Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures.
doi_str_mv 10.1038/s41565-019-0629-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2475037970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475037970</sourcerecordid><originalsourceid>FETCH-LOGICAL-o234t-73b3d8ec8f871c22dddffc7626ceec31e97312f2bc90fd875864bac0e72da2143</originalsourceid><addsrcrecordid>eNqNkstuFTEMhiNERS_wAGzQCJZoaC4zk2SJjgoFHambIpZRJnHaVD1JSTKF8_a4mlJ2iJUt67P92_oJec3oB0aFOq0DG6exp0z3dOK6Z8_IEZOD6oXQ4_OnXMlDclzrDaUj13x4QQ4F00qNVByRr1u7h9IXqPn2Hny3s1cJWnTdXcm_4i62fQchgGtdTN29TZ2H0n239rZ219Cg5NrK4tqCA16Sg4B1ePUYT8i3T2eXm_N-e_H5y-bjts9cDK2XYhZegVNBSeY4996H4OTEJwfgBAMtBeOBz07T4JUc1TTM1lGQ3FvOBnFC3q5zcXc01cUG7trllFClYRPVdBAIvVshvOPHArWZm7yUhLoMHySeLrWk_6SEnCRjXCuk3jxSy7wDb-5K3NmyN3--iIBagZ8w54CKIDl4wij-neppHCVmVG1isy3mtMlLatj6_v9bkeYrXZFIV1D-6mXUPHjCrJ4w6Anz4AnDxG9aWKQN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376711298</pqid></control><display><type>article</type><title>Layer-resolved magnetic proximity effect in van der Waals heterostructures</title><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Zhong, Ding ; Seyler, Kyle L. ; Linpeng, Xiayu ; Wilson, Nathan P. ; Taniguchi, Takashi ; Watanabe, Kenji ; McGuire, Michael A. ; Fu, Kai-Mei C. ; Xiao, Di ; Yao, Wang ; Xu, Xiaodong</creator><creatorcontrib>Zhong, Ding ; Seyler, Kyle L. ; Linpeng, Xiayu ; Wilson, Nathan P. ; Taniguchi, Takashi ; Watanabe, Kenji ; McGuire, Michael A. ; Fu, Kai-Mei C. ; Xiao, Di ; Yao, Wang ; Xu, Xiaodong ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0629-1</identifier><identifier>PMID: 31988503</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119/1000/1018 ; 639/766/119/997 ; Antiferromagnetism ; Charge transfer ; Chemistry and Materials Science ; Circular dichroism ; Dichroism ; Ferromagnetism ; Heterostructures ; Letter ; Magnetic domains ; Magnetic fields ; Magnetic properties ; magnetic properties and materials ; Magnetic structure ; Magnetism ; Magnetization ; MATERIALS SCIENCE ; Materials Science, Multidisciplinary ; Monolayers ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; Nanotechnology and Microengineering ; Proximity ; Proximity effect (electricity) ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology ; Two dimensional materials ; Wave functions</subject><ispartof>Nature nanotechnology, 2020-03, Vol.15 (3), p.187-191</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>193</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000509655700008</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-o234t-73b3d8ec8f871c22dddffc7626ceec31e97312f2bc90fd875864bac0e72da2143</cites><orcidid>0000-0003-2883-4528 ; 0000-0003-3701-8119 ; 0000-0003-0348-2095 ; 0000-0003-2996-122X ; 0000-0003-4775-8524 ; 0000-0003-1762-9406 ; 0000-0003-0165-6848 ; 0000-0003-3149-2071 ; 0000000303482095 ; 0000000317629406 ; 0000000328834528 ; 0000000337018119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31988503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1609043$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Ding</creatorcontrib><creatorcontrib>Seyler, Kyle L.</creatorcontrib><creatorcontrib>Linpeng, Xiayu</creatorcontrib><creatorcontrib>Wilson, Nathan P.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>McGuire, Michael A.</creatorcontrib><creatorcontrib>Fu, Kai-Mei C.</creatorcontrib><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Yao, Wang</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Layer-resolved magnetic proximity effect in van der Waals heterostructures</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>NAT NANOTECHNOL</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures.</description><subject>140/125</subject><subject>639/766/119/1000/1018</subject><subject>639/766/119/997</subject><subject>Antiferromagnetism</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Circular dichroism</subject><subject>Dichroism</subject><subject>Ferromagnetism</subject><subject>Heterostructures</subject><subject>Letter</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>magnetic properties and materials</subject><subject>Magnetic structure</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>MATERIALS SCIENCE</subject><subject>Materials Science, Multidisciplinary</subject><subject>Monolayers</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Proximity</subject><subject>Proximity effect (electricity)</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><subject>Two dimensional materials</subject><subject>Wave functions</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkstuFTEMhiNERS_wAGzQCJZoaC4zk2SJjgoFHambIpZRJnHaVD1JSTKF8_a4mlJ2iJUt67P92_oJec3oB0aFOq0DG6exp0z3dOK6Z8_IEZOD6oXQ4_OnXMlDclzrDaUj13x4QQ4F00qNVByRr1u7h9IXqPn2Hny3s1cJWnTdXcm_4i62fQchgGtdTN29TZ2H0n239rZ219Cg5NrK4tqCA16Sg4B1ePUYT8i3T2eXm_N-e_H5y-bjts9cDK2XYhZegVNBSeY4996H4OTEJwfgBAMtBeOBz07T4JUc1TTM1lGQ3FvOBnFC3q5zcXc01cUG7trllFClYRPVdBAIvVshvOPHArWZm7yUhLoMHySeLrWk_6SEnCRjXCuk3jxSy7wDb-5K3NmyN3--iIBagZ8w54CKIDl4wij-neppHCVmVG1isy3mtMlLatj6_v9bkeYrXZFIV1D-6mXUPHjCrJ4w6Anz4AnDxG9aWKQN</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhong, Ding</creator><creator>Seyler, Kyle L.</creator><creator>Linpeng, Xiayu</creator><creator>Wilson, Nathan P.</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>McGuire, Michael A.</creator><creator>Fu, Kai-Mei C.</creator><creator>Xiao, Di</creator><creator>Yao, Wang</creator><creator>Xu, Xiaodong</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2883-4528</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0348-2095</orcidid><orcidid>https://orcid.org/0000-0003-2996-122X</orcidid><orcidid>https://orcid.org/0000-0003-4775-8524</orcidid><orcidid>https://orcid.org/0000-0003-1762-9406</orcidid><orcidid>https://orcid.org/0000-0003-0165-6848</orcidid><orcidid>https://orcid.org/0000-0003-3149-2071</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000317629406</orcidid><orcidid>https://orcid.org/0000000328834528</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid></search><sort><creationdate>20200301</creationdate><title>Layer-resolved magnetic proximity effect in van der Waals heterostructures</title><author>Zhong, Ding ; Seyler, Kyle L. ; Linpeng, Xiayu ; Wilson, Nathan P. ; Taniguchi, Takashi ; Watanabe, Kenji ; McGuire, Michael A. ; Fu, Kai-Mei C. ; Xiao, Di ; Yao, Wang ; Xu, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o234t-73b3d8ec8f871c22dddffc7626ceec31e97312f2bc90fd875864bac0e72da2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/125</topic><topic>639/766/119/1000/1018</topic><topic>639/766/119/997</topic><topic>Antiferromagnetism</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Circular dichroism</topic><topic>Dichroism</topic><topic>Ferromagnetism</topic><topic>Heterostructures</topic><topic>Letter</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>magnetic properties and materials</topic><topic>Magnetic structure</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>MATERIALS SCIENCE</topic><topic>Materials Science, Multidisciplinary</topic><topic>Monolayers</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Proximity</topic><topic>Proximity effect (electricity)</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><topic>Two dimensional materials</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Ding</creatorcontrib><creatorcontrib>Seyler, Kyle L.</creatorcontrib><creatorcontrib>Linpeng, Xiayu</creatorcontrib><creatorcontrib>Wilson, Nathan P.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>McGuire, Michael A.</creatorcontrib><creatorcontrib>Fu, Kai-Mei C.</creatorcontrib><creatorcontrib>Xiao, Di</creatorcontrib><creatorcontrib>Yao, Wang</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Ding</au><au>Seyler, Kyle L.</au><au>Linpeng, Xiayu</au><au>Wilson, Nathan P.</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>McGuire, Michael A.</au><au>Fu, Kai-Mei C.</au><au>Xiao, Di</au><au>Yao, Wang</au><au>Xu, Xiaodong</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-resolved magnetic proximity effect in van der Waals heterostructures</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><stitle>NAT NANOTECHNOL</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>187</spage><epage>191</epage><pages>187-191</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Magnetic proximity effects are integral to manipulating spintronic 1 , 2 , superconducting 3 , 4 , excitonic 5 and topological phenomena 6 – 8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures 9 – 12 . In particular, atomically thin CrI 3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled 9 . Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe 2 and bi/trilayer CrI 3 . By controlling the individual layer magnetization in CrI 3 with a magnetic field, we show that the spin-dependent charge transfer between WSe 2 and CrI 3 is dominated by the interfacial CrI 3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe 2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering 13 . Controlling the individual layer magnetization in CrI 3 enables the observation of a layer-resolved magnetic proximity effect in WSe 2 /CrI 3 heterostructures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31988503</pmid><doi>10.1038/s41565-019-0629-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2883-4528</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-0348-2095</orcidid><orcidid>https://orcid.org/0000-0003-2996-122X</orcidid><orcidid>https://orcid.org/0000-0003-4775-8524</orcidid><orcidid>https://orcid.org/0000-0003-1762-9406</orcidid><orcidid>https://orcid.org/0000-0003-0165-6848</orcidid><orcidid>https://orcid.org/0000-0003-3149-2071</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000317629406</orcidid><orcidid>https://orcid.org/0000000328834528</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2020-03, Vol.15 (3), p.187-191
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_2475037970
source Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 140/125
639/766/119/1000/1018
639/766/119/997
Antiferromagnetism
Charge transfer
Chemistry and Materials Science
Circular dichroism
Dichroism
Ferromagnetism
Heterostructures
Letter
Magnetic domains
Magnetic fields
Magnetic properties
magnetic properties and materials
Magnetic structure
Magnetism
Magnetization
MATERIALS SCIENCE
Materials Science, Multidisciplinary
Monolayers
Nanoscience & Nanotechnology
Nanotechnology
Nanotechnology and Microengineering
Proximity
Proximity effect (electricity)
Science & Technology
Science & Technology - Other Topics
Technology
Two dimensional materials
Wave functions
title Layer-resolved magnetic proximity effect in van der Waals heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-resolved%20magnetic%20proximity%20effect%20in%20van%20der%20Waals%20heterostructures&rft.jtitle=Nature%20nanotechnology&rft.au=Zhong,%20Ding&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-03-01&rft.volume=15&rft.issue=3&rft.spage=187&rft.epage=191&rft.pages=187-191&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0629-1&rft_dat=%3Cproquest_osti_%3E2475037970%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376711298&rft_id=info:pmid/31988503&rfr_iscdi=true