In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography
Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technol...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021, Vol.112 (1-2), p.157-173 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 1-2 |
container_start_page | 157 |
container_title | International journal of advanced manufacturing technology |
container_volume | 112 |
creator | Mazzarisi, Marco Campanelli, Sabina Luisa Angelastro, Andrea Palano, Fania Dassisti, Michele |
description | Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature. |
doi_str_mv | 10.1007/s00170-020-06344-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474995749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474995749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</originalsourceid><addsrcrecordid>eNp9kEtPxCAYRYnRxHH0D7gicY3yammXZuJjkknczJ5QCjOMbalAF_PvpdbEnQs-Ejj3fskB4J7gR4KxeIoYE4ERpvmUjHOEL8CKcMYQw6S4BCtMywoxUVbX4CbGU8ZLUlYr0G0HGF2aYO8Hl3xwwwF6C1sXjE6wU9EE2JukOtia0WfS-WEGFByc_jQdajLSwjiNJqiu82c4xbnDDTaokH_S0YTeH4Iaj-dbcGVVF83d770G-9eX_eYd7T7etpvnHdKM1Alpa5hgTUUx5dyIiomCEFUxbjiruS1UgUVZYNoqxmhNG6t1aYkhusivomFr8LDUjsF_TSYmefJTGPJGSbngdV3kkSm6UDr4GIOxcgyuV-EsCZazVLlIlVmq_JEqcQ6xJRTHWZUJf9X_pL4Bzyp6pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474995749</pqid></control><display><type>article</type><title>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mazzarisi, Marco ; Campanelli, Sabina Luisa ; Angelastro, Andrea ; Palano, Fania ; Dassisti, Michele</creator><creatorcontrib>Mazzarisi, Marco ; Campanelli, Sabina Luisa ; Angelastro, Andrea ; Palano, Fania ; Dassisti, Michele</creatorcontrib><description>Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06344-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Feed rate ; Fiber lasers ; Flux density ; Grain size ; Industrial and Production Engineering ; Infrared imaging ; Laser beam welding ; Laser deposition ; Lasers ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microstructure ; Monitoring ; Nickel ; Nickel base alloys ; Original Article ; Performance standards ; Power sources ; Process parameters ; Solidification ; Substrates ; Superalloys ; Temperature distribution ; Temperature gradients ; Thermodynamic properties ; Thermography ; Ytterbium</subject><ispartof>International journal of advanced manufacturing technology, 2021, Vol.112 (1-2), p.157-173</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</citedby><cites>FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</cites><orcidid>0000-0002-9846-3198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06344-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06344-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mazzarisi, Marco</creatorcontrib><creatorcontrib>Campanelli, Sabina Luisa</creatorcontrib><creatorcontrib>Angelastro, Andrea</creatorcontrib><creatorcontrib>Palano, Fania</creatorcontrib><creatorcontrib>Dassisti, Michele</creatorcontrib><title>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.</description><subject>Additive manufacturing</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>Fiber lasers</subject><subject>Flux density</subject><subject>Grain size</subject><subject>Industrial and Production Engineering</subject><subject>Infrared imaging</subject><subject>Laser beam welding</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Monitoring</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Original Article</subject><subject>Performance standards</subject><subject>Power sources</subject><subject>Process parameters</subject><subject>Solidification</subject><subject>Substrates</subject><subject>Superalloys</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermodynamic properties</subject><subject>Thermography</subject><subject>Ytterbium</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPxCAYRYnRxHH0D7gicY3yammXZuJjkknczJ5QCjOMbalAF_PvpdbEnQs-Ejj3fskB4J7gR4KxeIoYE4ERpvmUjHOEL8CKcMYQw6S4BCtMywoxUVbX4CbGU8ZLUlYr0G0HGF2aYO8Hl3xwwwF6C1sXjE6wU9EE2JukOtia0WfS-WEGFByc_jQdajLSwjiNJqiu82c4xbnDDTaokH_S0YTeH4Iaj-dbcGVVF83d770G-9eX_eYd7T7etpvnHdKM1Alpa5hgTUUx5dyIiomCEFUxbjiruS1UgUVZYNoqxmhNG6t1aYkhusivomFr8LDUjsF_TSYmefJTGPJGSbngdV3kkSm6UDr4GIOxcgyuV-EsCZazVLlIlVmq_JEqcQ6xJRTHWZUJf9X_pL4Bzyp6pw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mazzarisi, Marco</creator><creator>Campanelli, Sabina Luisa</creator><creator>Angelastro, Andrea</creator><creator>Palano, Fania</creator><creator>Dassisti, Michele</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9846-3198</orcidid></search><sort><creationdate>2021</creationdate><title>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</title><author>Mazzarisi, Marco ; Campanelli, Sabina Luisa ; Angelastro, Andrea ; Palano, Fania ; Dassisti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>Fiber lasers</topic><topic>Flux density</topic><topic>Grain size</topic><topic>Industrial and Production Engineering</topic><topic>Infrared imaging</topic><topic>Laser beam welding</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Monitoring</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Original Article</topic><topic>Performance standards</topic><topic>Power sources</topic><topic>Process parameters</topic><topic>Solidification</topic><topic>Substrates</topic><topic>Superalloys</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermodynamic properties</topic><topic>Thermography</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzarisi, Marco</creatorcontrib><creatorcontrib>Campanelli, Sabina Luisa</creatorcontrib><creatorcontrib>Angelastro, Andrea</creatorcontrib><creatorcontrib>Palano, Fania</creatorcontrib><creatorcontrib>Dassisti, Michele</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzarisi, Marco</au><au>Campanelli, Sabina Luisa</au><au>Angelastro, Andrea</au><au>Palano, Fania</au><au>Dassisti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021</date><risdate>2021</risdate><volume>112</volume><issue>1-2</issue><spage>157</spage><epage>173</epage><pages>157-173</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06344-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9846-3198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021, Vol.112 (1-2), p.157-173 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2474995749 |
source | SpringerLink Journals - AutoHoldings |
subjects | Additive manufacturing CAE) and Design Computer-Aided Engineering (CAD Engineering Feed rate Fiber lasers Flux density Grain size Industrial and Production Engineering Infrared imaging Laser beam welding Laser deposition Lasers Mechanical Engineering Mechanical properties Media Management Microstructure Monitoring Nickel Nickel base alloys Original Article Performance standards Power sources Process parameters Solidification Substrates Superalloys Temperature distribution Temperature gradients Thermodynamic properties Thermography Ytterbium |
title | In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20monitoring%20of%20direct%20laser%20metal%20deposition%20of%20a%20nickel-based%20superalloy%20using%20infrared%20thermography&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Mazzarisi,%20Marco&rft.date=2021&rft.volume=112&rft.issue=1-2&rft.spage=157&rft.epage=173&rft.pages=157-173&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06344-0&rft_dat=%3Cproquest_cross%3E2474995749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474995749&rft_id=info:pmid/&rfr_iscdi=true |