In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography

Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021, Vol.112 (1-2), p.157-173
Hauptverfasser: Mazzarisi, Marco, Campanelli, Sabina Luisa, Angelastro, Andrea, Palano, Fania, Dassisti, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 1-2
container_start_page 157
container_title International journal of advanced manufacturing technology
container_volume 112
creator Mazzarisi, Marco
Campanelli, Sabina Luisa
Angelastro, Andrea
Palano, Fania
Dassisti, Michele
description Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.
doi_str_mv 10.1007/s00170-020-06344-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474995749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474995749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</originalsourceid><addsrcrecordid>eNp9kEtPxCAYRYnRxHH0D7gicY3yammXZuJjkknczJ5QCjOMbalAF_PvpdbEnQs-Ejj3fskB4J7gR4KxeIoYE4ERpvmUjHOEL8CKcMYQw6S4BCtMywoxUVbX4CbGU8ZLUlYr0G0HGF2aYO8Hl3xwwwF6C1sXjE6wU9EE2JukOtia0WfS-WEGFByc_jQdajLSwjiNJqiu82c4xbnDDTaokH_S0YTeH4Iaj-dbcGVVF83d770G-9eX_eYd7T7etpvnHdKM1Alpa5hgTUUx5dyIiomCEFUxbjiruS1UgUVZYNoqxmhNG6t1aYkhusivomFr8LDUjsF_TSYmefJTGPJGSbngdV3kkSm6UDr4GIOxcgyuV-EsCZazVLlIlVmq_JEqcQ6xJRTHWZUJf9X_pL4Bzyp6pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474995749</pqid></control><display><type>article</type><title>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mazzarisi, Marco ; Campanelli, Sabina Luisa ; Angelastro, Andrea ; Palano, Fania ; Dassisti, Michele</creator><creatorcontrib>Mazzarisi, Marco ; Campanelli, Sabina Luisa ; Angelastro, Andrea ; Palano, Fania ; Dassisti, Michele</creatorcontrib><description>Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06344-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Feed rate ; Fiber lasers ; Flux density ; Grain size ; Industrial and Production Engineering ; Infrared imaging ; Laser beam welding ; Laser deposition ; Lasers ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microstructure ; Monitoring ; Nickel ; Nickel base alloys ; Original Article ; Performance standards ; Power sources ; Process parameters ; Solidification ; Substrates ; Superalloys ; Temperature distribution ; Temperature gradients ; Thermodynamic properties ; Thermography ; Ytterbium</subject><ispartof>International journal of advanced manufacturing technology, 2021, Vol.112 (1-2), p.157-173</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</citedby><cites>FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</cites><orcidid>0000-0002-9846-3198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06344-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06344-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mazzarisi, Marco</creatorcontrib><creatorcontrib>Campanelli, Sabina Luisa</creatorcontrib><creatorcontrib>Angelastro, Andrea</creatorcontrib><creatorcontrib>Palano, Fania</creatorcontrib><creatorcontrib>Dassisti, Michele</creatorcontrib><title>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.</description><subject>Additive manufacturing</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>Fiber lasers</subject><subject>Flux density</subject><subject>Grain size</subject><subject>Industrial and Production Engineering</subject><subject>Infrared imaging</subject><subject>Laser beam welding</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microstructure</subject><subject>Monitoring</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Original Article</subject><subject>Performance standards</subject><subject>Power sources</subject><subject>Process parameters</subject><subject>Solidification</subject><subject>Substrates</subject><subject>Superalloys</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermodynamic properties</subject><subject>Thermography</subject><subject>Ytterbium</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPxCAYRYnRxHH0D7gicY3yammXZuJjkknczJ5QCjOMbalAF_PvpdbEnQs-Ejj3fskB4J7gR4KxeIoYE4ERpvmUjHOEL8CKcMYQw6S4BCtMywoxUVbX4CbGU8ZLUlYr0G0HGF2aYO8Hl3xwwwF6C1sXjE6wU9EE2JukOtia0WfS-WEGFByc_jQdajLSwjiNJqiu82c4xbnDDTaokH_S0YTeH4Iaj-dbcGVVF83d770G-9eX_eYd7T7etpvnHdKM1Alpa5hgTUUx5dyIiomCEFUxbjiruS1UgUVZYNoqxmhNG6t1aYkhusivomFr8LDUjsF_TSYmefJTGPJGSbngdV3kkSm6UDr4GIOxcgyuV-EsCZazVLlIlVmq_JEqcQ6xJRTHWZUJf9X_pL4Bzyp6pw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mazzarisi, Marco</creator><creator>Campanelli, Sabina Luisa</creator><creator>Angelastro, Andrea</creator><creator>Palano, Fania</creator><creator>Dassisti, Michele</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9846-3198</orcidid></search><sort><creationdate>2021</creationdate><title>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</title><author>Mazzarisi, Marco ; Campanelli, Sabina Luisa ; Angelastro, Andrea ; Palano, Fania ; Dassisti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cfe373b820244e7837511a834e4394f5a5076502da33292bfcc6f1e1c56507b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>Fiber lasers</topic><topic>Flux density</topic><topic>Grain size</topic><topic>Industrial and Production Engineering</topic><topic>Infrared imaging</topic><topic>Laser beam welding</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microstructure</topic><topic>Monitoring</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Original Article</topic><topic>Performance standards</topic><topic>Power sources</topic><topic>Process parameters</topic><topic>Solidification</topic><topic>Substrates</topic><topic>Superalloys</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermodynamic properties</topic><topic>Thermography</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazzarisi, Marco</creatorcontrib><creatorcontrib>Campanelli, Sabina Luisa</creatorcontrib><creatorcontrib>Angelastro, Andrea</creatorcontrib><creatorcontrib>Palano, Fania</creatorcontrib><creatorcontrib>Dassisti, Michele</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzarisi, Marco</au><au>Campanelli, Sabina Luisa</au><au>Angelastro, Andrea</au><au>Palano, Fania</au><au>Dassisti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021</date><risdate>2021</risdate><volume>112</volume><issue>1-2</issue><spage>157</spage><epage>173</epage><pages>157-173</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Metal additive manufacturing is growing its impact on high-tech industrial sectors so far. The capability to recover and repair worn components, with costs that are gradually more affordable, is giving a boost to the development of these technologies. The direct laser metal deposition (DLMD) technology is taking a leading role in this domain. Manufacturing components, with high mechanical properties, require a careful process design and a continuous control. The monitoring of the thermal field thus assumes a crucial role in processes in which high-power sources are involved. Thermal treatments influence the microstructure, morphology and the grain size of the depositions indeed, which determine high-performance standards. In this work, an ytterbium fibre laser source was used to build single-track depositions of a nickel-based superalloy powder on a substrate of the same material. Temperature field monitoring was performed using a high-frequency (100 Hz) IR thermal camera, allowing an accurate monitoring of peeks temperature, thermal cycles and thermal gradients. Thermal data and process parameters were compared with metallographic analysis to capture the relation between the geometrical and microstructural characteristics of clads. The study focuses on the influence of the powder feed rate and energy density on thermal parameters. An innovative approach to the solidification map method, commonly implemented with numerical simulations of welding and additive manufacturing, has been successfully applied to experimental data giving results consistent with the literature.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06344-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9846-3198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021, Vol.112 (1-2), p.157-173
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2474995749
source SpringerLink Journals - AutoHoldings
subjects Additive manufacturing
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Feed rate
Fiber lasers
Flux density
Grain size
Industrial and Production Engineering
Infrared imaging
Laser beam welding
Laser deposition
Lasers
Mechanical Engineering
Mechanical properties
Media Management
Microstructure
Monitoring
Nickel
Nickel base alloys
Original Article
Performance standards
Power sources
Process parameters
Solidification
Substrates
Superalloys
Temperature distribution
Temperature gradients
Thermodynamic properties
Thermography
Ytterbium
title In situ monitoring of direct laser metal deposition of a nickel-based superalloy using infrared thermography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20monitoring%20of%20direct%20laser%20metal%20deposition%20of%20a%20nickel-based%20superalloy%20using%20infrared%20thermography&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Mazzarisi,%20Marco&rft.date=2021&rft.volume=112&rft.issue=1-2&rft.spage=157&rft.epage=173&rft.pages=157-173&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06344-0&rft_dat=%3Cproquest_cross%3E2474995749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474995749&rft_id=info:pmid/&rfr_iscdi=true