Deciphering the response and resistance to immune-checkpoint inhibitors in lung cancer with artificial intelligence-based analysis: when PIONeeR meets QUANTIC
Summary This project aims to generate dense longitudinal data in lung cancer patients undergoing anti-PD1/PDL1 therapy. Mathematical modelling with mechanistic learning algorithms will help decipher the mechanisms underlying the response or resistance to immunotherapy. A better understanding of thes...
Gespeichert in:
Veröffentlicht in: | British journal of cancer 2020-08, Vol.123 (3), p.337-338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
This project aims to generate dense longitudinal data in lung cancer patients undergoing anti-PD1/PDL1 therapy. Mathematical modelling with mechanistic learning algorithms will help decipher the mechanisms underlying the response or resistance to immunotherapy. A better understanding of these mechanisms should help identifying actionable items to increase the efficacy of immune-checkpoint inhibitors. |
---|---|
ISSN: | 0007-0920 1532-1827 |
DOI: | 10.1038/s41416-020-0918-3 |