Deciphering the response and resistance to immune-checkpoint inhibitors in lung cancer with artificial intelligence-based analysis: when PIONeeR meets QUANTIC

Summary This project aims to generate dense longitudinal data in lung cancer patients undergoing anti-PD1/PDL1 therapy. Mathematical modelling with mechanistic learning algorithms will help decipher the mechanisms underlying the response or resistance to immunotherapy. A better understanding of thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2020-08, Vol.123 (3), p.337-338
Hauptverfasser: Ciccolini, Joseph, Benzekry, Sébastien, Barlesi, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This project aims to generate dense longitudinal data in lung cancer patients undergoing anti-PD1/PDL1 therapy. Mathematical modelling with mechanistic learning algorithms will help decipher the mechanisms underlying the response or resistance to immunotherapy. A better understanding of these mechanisms should help identifying actionable items to increase the efficacy of immune-checkpoint inhibitors.
ISSN:0007-0920
1532-1827
DOI:10.1038/s41416-020-0918-3