Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities

To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-15
Hauptverfasser: Gu, Haolei, Chen, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Gu, Haolei
Chen, Yan
description To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.
doi_str_mv 10.1155/2020/6614570
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474913129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474913129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</originalsourceid><addsrcrecordid>eNqFkM1O3DAQgCNEpQLl1jOyxLGbYjv-iY-rFaUrUYHEInGLHHvCGoV4aztC21Nfo328Pkm9GySOnGbG881Y8xXFZ4K_EsL5BcUUXwhBGJf4oDgiXFQlJ0we5hxTVhJaPXwsjmN8wpgSTuqj4u99dMMjSmtAVwG26Ie30KPk0XzQ_fYX7DvL5402CfluX90G96zDdobuwPjB7lM9WLSCkFyu0HKwY0zBQUR-mEbGtnfm3-8_Ec1TgiG5XSN_4gK69X0_7h_cgFbrAIAWLuXhT8WHTvcRTl_jSXH_7XK1-F5e31wtF_Pr0jBSpVJYEFTJWuJWWUVaowxXzLTG6q4W2AotuK1ba9qW6ZbJDksttYGac82kJdVJcT7t3QT_c4SYmic_hnx-bCiTTJGKUJWp2USZ4GMM0DWbyUNDcLOz3-zsN6_2M_5lwtcuK3px79FnEw2ZgU6_0UQJRWX1H5nrkN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474913129</pqid></control><display><type>article</type><title>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gu, Haolei ; Chen, Yan</creator><contributor>Bai, Yun ; Yun Bai</contributor><creatorcontrib>Gu, Haolei ; Chen, Yan ; Bai, Yun ; Yun Bai</creatorcontrib><description>To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/6614570</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Air pollution ; Convolution ; Engineering ; Environmental protection ; Impact analysis ; Industrial production ; Internet ; Keywords ; Optimization algorithms ; Outdoor air quality ; Pollutants ; Pollution control ; Search engines</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Haolei Gu and Yan Chen.</rights><rights>Copyright © 2020 Haolei Gu and Yan Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</citedby><cites>FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</cites><orcidid>0000-0003-3986-2583 ; 0000-0002-0257-7992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Bai, Yun</contributor><contributor>Yun Bai</contributor><creatorcontrib>Gu, Haolei</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><title>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</title><title>Mathematical problems in engineering</title><description>To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.</description><subject>Air pollution</subject><subject>Convolution</subject><subject>Engineering</subject><subject>Environmental protection</subject><subject>Impact analysis</subject><subject>Industrial production</subject><subject>Internet</subject><subject>Keywords</subject><subject>Optimization algorithms</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Search engines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkM1O3DAQgCNEpQLl1jOyxLGbYjv-iY-rFaUrUYHEInGLHHvCGoV4aztC21Nfo328Pkm9GySOnGbG881Y8xXFZ4K_EsL5BcUUXwhBGJf4oDgiXFQlJ0we5hxTVhJaPXwsjmN8wpgSTuqj4u99dMMjSmtAVwG26Ie30KPk0XzQ_fYX7DvL5402CfluX90G96zDdobuwPjB7lM9WLSCkFyu0HKwY0zBQUR-mEbGtnfm3-8_Ec1TgiG5XSN_4gK69X0_7h_cgFbrAIAWLuXhT8WHTvcRTl_jSXH_7XK1-F5e31wtF_Pr0jBSpVJYEFTJWuJWWUVaowxXzLTG6q4W2AotuK1ba9qW6ZbJDksttYGac82kJdVJcT7t3QT_c4SYmic_hnx-bCiTTJGKUJWp2USZ4GMM0DWbyUNDcLOz3-zsN6_2M_5lwtcuK3px79FnEw2ZgU6_0UQJRWX1H5nrkN4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gu, Haolei</creator><creator>Chen, Yan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3986-2583</orcidid><orcidid>https://orcid.org/0000-0002-0257-7992</orcidid></search><sort><creationdate>2020</creationdate><title>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</title><author>Gu, Haolei ; Chen, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Convolution</topic><topic>Engineering</topic><topic>Environmental protection</topic><topic>Impact analysis</topic><topic>Industrial production</topic><topic>Internet</topic><topic>Keywords</topic><topic>Optimization algorithms</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Search engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Haolei</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Haolei</au><au>Chen, Yan</au><au>Bai, Yun</au><au>Yun Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6614570</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3986-2583</orcidid><orcidid>https://orcid.org/0000-0002-0257-7992</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2474913129
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Air pollution
Convolution
Engineering
Environmental protection
Impact analysis
Industrial production
Internet
Keywords
Optimization algorithms
Outdoor air quality
Pollutants
Pollution control
Search engines
title Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Grey%20Model%20to%20Analyze%20the%20Impact%20of%20the%20Primary,%20Secondary,%20and%20Tertiary%20Industries%20on%20the%20Public%E2%80%99s%20Attention%20to%20Air%20Pollution%20in%20Three%20Cities&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Gu,%20Haolei&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/6614570&rft_dat=%3Cproquest_cross%3E2474913129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474913129&rft_id=info:pmid/&rfr_iscdi=true