Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities
To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Gu, Haolei Chen, Yan |
description | To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution. |
doi_str_mv | 10.1155/2020/6614570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474913129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474913129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</originalsourceid><addsrcrecordid>eNqFkM1O3DAQgCNEpQLl1jOyxLGbYjv-iY-rFaUrUYHEInGLHHvCGoV4aztC21Nfo328Pkm9GySOnGbG881Y8xXFZ4K_EsL5BcUUXwhBGJf4oDgiXFQlJ0we5hxTVhJaPXwsjmN8wpgSTuqj4u99dMMjSmtAVwG26Ie30KPk0XzQ_fYX7DvL5402CfluX90G96zDdobuwPjB7lM9WLSCkFyu0HKwY0zBQUR-mEbGtnfm3-8_Ec1TgiG5XSN_4gK69X0_7h_cgFbrAIAWLuXhT8WHTvcRTl_jSXH_7XK1-F5e31wtF_Pr0jBSpVJYEFTJWuJWWUVaowxXzLTG6q4W2AotuK1ba9qW6ZbJDksttYGac82kJdVJcT7t3QT_c4SYmic_hnx-bCiTTJGKUJWp2USZ4GMM0DWbyUNDcLOz3-zsN6_2M_5lwtcuK3px79FnEw2ZgU6_0UQJRWX1H5nrkN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474913129</pqid></control><display><type>article</type><title>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gu, Haolei ; Chen, Yan</creator><contributor>Bai, Yun ; Yun Bai</contributor><creatorcontrib>Gu, Haolei ; Chen, Yan ; Bai, Yun ; Yun Bai</creatorcontrib><description>To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/6614570</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Air pollution ; Convolution ; Engineering ; Environmental protection ; Impact analysis ; Industrial production ; Internet ; Keywords ; Optimization algorithms ; Outdoor air quality ; Pollutants ; Pollution control ; Search engines</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15</ispartof><rights>Copyright © 2020 Haolei Gu and Yan Chen.</rights><rights>Copyright © 2020 Haolei Gu and Yan Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</citedby><cites>FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</cites><orcidid>0000-0003-3986-2583 ; 0000-0002-0257-7992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Bai, Yun</contributor><contributor>Yun Bai</contributor><creatorcontrib>Gu, Haolei</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><title>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</title><title>Mathematical problems in engineering</title><description>To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.</description><subject>Air pollution</subject><subject>Convolution</subject><subject>Engineering</subject><subject>Environmental protection</subject><subject>Impact analysis</subject><subject>Industrial production</subject><subject>Internet</subject><subject>Keywords</subject><subject>Optimization algorithms</subject><subject>Outdoor air quality</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Search engines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkM1O3DAQgCNEpQLl1jOyxLGbYjv-iY-rFaUrUYHEInGLHHvCGoV4aztC21Nfo328Pkm9GySOnGbG881Y8xXFZ4K_EsL5BcUUXwhBGJf4oDgiXFQlJ0we5hxTVhJaPXwsjmN8wpgSTuqj4u99dMMjSmtAVwG26Ie30KPk0XzQ_fYX7DvL5402CfluX90G96zDdobuwPjB7lM9WLSCkFyu0HKwY0zBQUR-mEbGtnfm3-8_Ec1TgiG5XSN_4gK69X0_7h_cgFbrAIAWLuXhT8WHTvcRTl_jSXH_7XK1-F5e31wtF_Pr0jBSpVJYEFTJWuJWWUVaowxXzLTG6q4W2AotuK1ba9qW6ZbJDksttYGac82kJdVJcT7t3QT_c4SYmic_hnx-bCiTTJGKUJWp2USZ4GMM0DWbyUNDcLOz3-zsN6_2M_5lwtcuK3px79FnEw2ZgU6_0UQJRWX1H5nrkN4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gu, Haolei</creator><creator>Chen, Yan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3986-2583</orcidid><orcidid>https://orcid.org/0000-0002-0257-7992</orcidid></search><sort><creationdate>2020</creationdate><title>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</title><author>Gu, Haolei ; Chen, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-6de6297870b9d91bc9c594cbcdaf860d6a65d8bdcbb4ab47f07a7ace855a47d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Convolution</topic><topic>Engineering</topic><topic>Environmental protection</topic><topic>Impact analysis</topic><topic>Industrial production</topic><topic>Internet</topic><topic>Keywords</topic><topic>Optimization algorithms</topic><topic>Outdoor air quality</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Search engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Haolei</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Haolei</au><au>Chen, Yan</au><au>Bai, Yun</au><au>Yun Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>To analyze the impact of the added value of primary, secondary, and tertiary industry on public attention to air pollution in Handan, Xingtai, and Shijiazhuang, Baidu index is used to build the air pollution attention index. Taking the added value of the primary, secondary, and tertiary industry as the influencing factors, fractional grey multivariable convolution model is used to predict and analyze the public attention to air pollution in these three cities from 2020 to 2024. The results show that the secondary industry has the greatest impact on the public’s attention to air pollution compared with the primary industry and the tertiary industry. And the added value of the secondary industry with faster increase will cause a faster increase in the public’s air pollution attention from 2020 to 2024, especially in Handan. It is not only helpful to air pollution control, but also helpful in solving the public psychological problems caused by air pollution.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6614570</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3986-2583</orcidid><orcidid>https://orcid.org/0000-0002-0257-7992</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-15 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2474913129 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Air pollution Convolution Engineering Environmental protection Impact analysis Industrial production Internet Keywords Optimization algorithms Outdoor air quality Pollutants Pollution control Search engines |
title | Using the Grey Model to Analyze the Impact of the Primary, Secondary, and Tertiary Industries on the Public’s Attention to Air Pollution in Three Cities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Grey%20Model%20to%20Analyze%20the%20Impact%20of%20the%20Primary,%20Secondary,%20and%20Tertiary%20Industries%20on%20the%20Public%E2%80%99s%20Attention%20to%20Air%20Pollution%20in%20Three%20Cities&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Gu,%20Haolei&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/6614570&rft_dat=%3Cproquest_cross%3E2474913129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474913129&rft_id=info:pmid/&rfr_iscdi=true |