An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations

A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.226754-226772
Hauptverfasser: Nguyen, Trong-The, Wang, Hong-Jiang, Dao, Thi-Kien, Pan, Jeng-Shyang, Liu, Jian-Hua, Weng, Shaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226772
container_issue
container_start_page 226754
container_title IEEE access
container_volume 8
creator Nguyen, Trong-The
Wang, Hong-Jiang
Dao, Thi-Kien
Pan, Jeng-Shyang
Liu, Jian-Hua
Weng, Shaowei
description A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.
doi_str_mv 10.1109/ACCESS.2020.3045975
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474859268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9300231</ieee_id><doaj_id>oai_doaj_org_article_4fb1770cc005400a9d18afd514f2864d</doaj_id><sourcerecordid>2474859268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwHPrfncTY7L4kdB8VA9hzST1JRtsyar4r83dUWcywxv3nsZ8qpqRvCCEKyu2667Wa0WFFO8YJgL1Yij6oySWs2ZYPXxv_m0usx5i0vJAonmrArtHi13Q4ofDtCqDzuHHmMPqO03MYXxdYfMHlAYM2qHoQ_WjCHukY8JPQ1j2Jm-dJcmNHrUmWwNOHT_BSkO8dMltBp_tvmiOvGmz-7yt59XL7c3z939_OHpbtm1D3MrqBznHMxaCQAGEgwl1oFdK29qbmvmGXBXdtISIRpluaPSgDLCU1ZYlHC2ZufVcvKFaLZ6SOXI9KWjCfoHiGmjTRqD7Z3mfk2aBluLseAYGwVEGg-CcE9lzaF4XU1e5YPe3l0e9Ta-p305X1PecCkUrWVhsYllU8w5Of_3KsH6EJGeItKHiPRvREU1m1TBOfenUAxjygj7BoiQjdM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474859268</pqid></control><display><type>article</type><title>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nguyen, Trong-The ; Wang, Hong-Jiang ; Dao, Thi-Kien ; Pan, Jeng-Shyang ; Liu, Jian-Hua ; Weng, Shaowei</creator><creatorcontrib>Nguyen, Trong-The ; Wang, Hong-Jiang ; Dao, Thi-Kien ; Pan, Jeng-Shyang ; Liu, Jian-Hua ; Weng, Shaowei</creatorcontrib><description>A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3045975</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification algorithms ; dynamic weight ; Heuristic algorithms ; Hydroelectric power generation ; Hydroelectric power stations ; Mold ; optimal dispatching of cascade hydropower ; Optimization ; Particle swarm optimization ; Performance evaluation ; Reservoirs ; reverse learning ; Slime ; Slime mold algorithm ; Veins</subject><ispartof>IEEE access, 2020, Vol.8, p.226754-226772</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</citedby><cites>FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</cites><orcidid>0000-0002-3128-9025 ; 0000-0002-6963-2626 ; 0000-0002-2805-652X ; 0000-0003-1037-7699 ; 0000-0001-9450-600X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9300231$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Wang, Hong-Jiang</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><creatorcontrib>Liu, Jian-Hua</creatorcontrib><creatorcontrib>Weng, Shaowei</creatorcontrib><title>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</title><title>IEEE access</title><addtitle>Access</addtitle><description>A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.</description><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>dynamic weight</subject><subject>Heuristic algorithms</subject><subject>Hydroelectric power generation</subject><subject>Hydroelectric power stations</subject><subject>Mold</subject><subject>optimal dispatching of cascade hydropower</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Reservoirs</subject><subject>reverse learning</subject><subject>Slime</subject><subject>Slime mold algorithm</subject><subject>Veins</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwHPrfncTY7L4kdB8VA9hzST1JRtsyar4r83dUWcywxv3nsZ8qpqRvCCEKyu2667Wa0WFFO8YJgL1Yij6oySWs2ZYPXxv_m0usx5i0vJAonmrArtHi13Q4ofDtCqDzuHHmMPqO03MYXxdYfMHlAYM2qHoQ_WjCHukY8JPQ1j2Jm-dJcmNHrUmWwNOHT_BSkO8dMltBp_tvmiOvGmz-7yt59XL7c3z939_OHpbtm1D3MrqBznHMxaCQAGEgwl1oFdK29qbmvmGXBXdtISIRpluaPSgDLCU1ZYlHC2ZufVcvKFaLZ6SOXI9KWjCfoHiGmjTRqD7Z3mfk2aBluLseAYGwVEGg-CcE9lzaF4XU1e5YPe3l0e9Ta-p305X1PecCkUrWVhsYllU8w5Of_3KsH6EJGeItKHiPRvREU1m1TBOfenUAxjygj7BoiQjdM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nguyen, Trong-The</creator><creator>Wang, Hong-Jiang</creator><creator>Dao, Thi-Kien</creator><creator>Pan, Jeng-Shyang</creator><creator>Liu, Jian-Hua</creator><creator>Weng, Shaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0003-1037-7699</orcidid><orcidid>https://orcid.org/0000-0001-9450-600X</orcidid></search><sort><creationdate>2020</creationdate><title>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</title><author>Nguyen, Trong-The ; Wang, Hong-Jiang ; Dao, Thi-Kien ; Pan, Jeng-Shyang ; Liu, Jian-Hua ; Weng, Shaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>dynamic weight</topic><topic>Heuristic algorithms</topic><topic>Hydroelectric power generation</topic><topic>Hydroelectric power stations</topic><topic>Mold</topic><topic>optimal dispatching of cascade hydropower</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Reservoirs</topic><topic>reverse learning</topic><topic>Slime</topic><topic>Slime mold algorithm</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Wang, Hong-Jiang</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><creatorcontrib>Liu, Jian-Hua</creatorcontrib><creatorcontrib>Weng, Shaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trong-The</au><au>Wang, Hong-Jiang</au><au>Dao, Thi-Kien</au><au>Pan, Jeng-Shyang</au><au>Liu, Jian-Hua</au><au>Weng, Shaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>226754</spage><epage>226772</epage><pages>226754-226772</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3045975</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0003-1037-7699</orcidid><orcidid>https://orcid.org/0000-0001-9450-600X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.226754-226772
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2474859268
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Classification algorithms
dynamic weight
Heuristic algorithms
Hydroelectric power generation
Hydroelectric power stations
Mold
optimal dispatching of cascade hydropower
Optimization
Particle swarm optimization
Performance evaluation
Reservoirs
reverse learning
Slime
Slime mold algorithm
Veins
title An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Slime%20Mold%20Algorithm%20and%20its%20Application%20for%20Optimal%20Operation%20of%20Cascade%20Hydropower%20Stations&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Trong-The&rft.date=2020&rft.volume=8&rft.spage=226754&rft.epage=226772&rft.pages=226754-226772&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3045975&rft_dat=%3Cproquest_cross%3E2474859268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474859268&rft_id=info:pmid/&rft_ieee_id=9300231&rft_doaj_id=oai_doaj_org_article_4fb1770cc005400a9d18afd514f2864d&rfr_iscdi=true