An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations
A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local i...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.226754-226772 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226772 |
---|---|
container_issue | |
container_start_page | 226754 |
container_title | IEEE access |
container_volume | 8 |
creator | Nguyen, Trong-The Wang, Hong-Jiang Dao, Thi-Kien Pan, Jeng-Shyang Liu, Jian-Hua Weng, Shaowei |
description | A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms. |
doi_str_mv | 10.1109/ACCESS.2020.3045975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474859268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9300231</ieee_id><doaj_id>oai_doaj_org_article_4fb1770cc005400a9d18afd514f2864d</doaj_id><sourcerecordid>2474859268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwHPrfncTY7L4kdB8VA9hzST1JRtsyar4r83dUWcywxv3nsZ8qpqRvCCEKyu2667Wa0WFFO8YJgL1Yij6oySWs2ZYPXxv_m0usx5i0vJAonmrArtHi13Q4ofDtCqDzuHHmMPqO03MYXxdYfMHlAYM2qHoQ_WjCHukY8JPQ1j2Jm-dJcmNHrUmWwNOHT_BSkO8dMltBp_tvmiOvGmz-7yt59XL7c3z939_OHpbtm1D3MrqBznHMxaCQAGEgwl1oFdK29qbmvmGXBXdtISIRpluaPSgDLCU1ZYlHC2ZufVcvKFaLZ6SOXI9KWjCfoHiGmjTRqD7Z3mfk2aBluLseAYGwVEGg-CcE9lzaF4XU1e5YPe3l0e9Ta-p305X1PecCkUrWVhsYllU8w5Of_3KsH6EJGeItKHiPRvREU1m1TBOfenUAxjygj7BoiQjdM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474859268</pqid></control><display><type>article</type><title>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nguyen, Trong-The ; Wang, Hong-Jiang ; Dao, Thi-Kien ; Pan, Jeng-Shyang ; Liu, Jian-Hua ; Weng, Shaowei</creator><creatorcontrib>Nguyen, Trong-The ; Wang, Hong-Jiang ; Dao, Thi-Kien ; Pan, Jeng-Shyang ; Liu, Jian-Hua ; Weng, Shaowei</creatorcontrib><description>A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3045975</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification algorithms ; dynamic weight ; Heuristic algorithms ; Hydroelectric power generation ; Hydroelectric power stations ; Mold ; optimal dispatching of cascade hydropower ; Optimization ; Particle swarm optimization ; Performance evaluation ; Reservoirs ; reverse learning ; Slime ; Slime mold algorithm ; Veins</subject><ispartof>IEEE access, 2020, Vol.8, p.226754-226772</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</citedby><cites>FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</cites><orcidid>0000-0002-3128-9025 ; 0000-0002-6963-2626 ; 0000-0002-2805-652X ; 0000-0003-1037-7699 ; 0000-0001-9450-600X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9300231$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Wang, Hong-Jiang</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><creatorcontrib>Liu, Jian-Hua</creatorcontrib><creatorcontrib>Weng, Shaowei</creatorcontrib><title>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</title><title>IEEE access</title><addtitle>Access</addtitle><description>A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.</description><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>dynamic weight</subject><subject>Heuristic algorithms</subject><subject>Hydroelectric power generation</subject><subject>Hydroelectric power stations</subject><subject>Mold</subject><subject>optimal dispatching of cascade hydropower</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Reservoirs</subject><subject>reverse learning</subject><subject>Slime</subject><subject>Slime mold algorithm</subject><subject>Veins</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwHPrfncTY7L4kdB8VA9hzST1JRtsyar4r83dUWcywxv3nsZ8qpqRvCCEKyu2667Wa0WFFO8YJgL1Yij6oySWs2ZYPXxv_m0usx5i0vJAonmrArtHi13Q4ofDtCqDzuHHmMPqO03MYXxdYfMHlAYM2qHoQ_WjCHukY8JPQ1j2Jm-dJcmNHrUmWwNOHT_BSkO8dMltBp_tvmiOvGmz-7yt59XL7c3z939_OHpbtm1D3MrqBznHMxaCQAGEgwl1oFdK29qbmvmGXBXdtISIRpluaPSgDLCU1ZYlHC2ZufVcvKFaLZ6SOXI9KWjCfoHiGmjTRqD7Z3mfk2aBluLseAYGwVEGg-CcE9lzaF4XU1e5YPe3l0e9Ta-p305X1PecCkUrWVhsYllU8w5Of_3KsH6EJGeItKHiPRvREU1m1TBOfenUAxjygj7BoiQjdM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nguyen, Trong-The</creator><creator>Wang, Hong-Jiang</creator><creator>Dao, Thi-Kien</creator><creator>Pan, Jeng-Shyang</creator><creator>Liu, Jian-Hua</creator><creator>Weng, Shaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0003-1037-7699</orcidid><orcidid>https://orcid.org/0000-0001-9450-600X</orcidid></search><sort><creationdate>2020</creationdate><title>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</title><author>Nguyen, Trong-The ; Wang, Hong-Jiang ; Dao, Thi-Kien ; Pan, Jeng-Shyang ; Liu, Jian-Hua ; Weng, Shaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-4dab95dd3d8da21cedcb9fa64c63f3d4e5dd8c15579c4e28ad9a5f23cb92143b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>dynamic weight</topic><topic>Heuristic algorithms</topic><topic>Hydroelectric power generation</topic><topic>Hydroelectric power stations</topic><topic>Mold</topic><topic>optimal dispatching of cascade hydropower</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Reservoirs</topic><topic>reverse learning</topic><topic>Slime</topic><topic>Slime mold algorithm</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Wang, Hong-Jiang</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><creatorcontrib>Liu, Jian-Hua</creatorcontrib><creatorcontrib>Weng, Shaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trong-The</au><au>Wang, Hong-Jiang</au><au>Dao, Thi-Kien</au><au>Pan, Jeng-Shyang</au><au>Liu, Jian-Hua</au><au>Weng, Shaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>226754</spage><epage>226772</epage><pages>226754-226772</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A recently modern stochastic optimization algorithm has been developed by observing the life of slime mold physarum polycephalum in nature. The algorithm is called the slime mold algorithm (SMA) with an excellent exploratory capacity and exploitation inclination. Still, slipping into optimal local is easy to happen and slowly converges speed while dealing with complicated problems. This article proposes a new process of improving SMA (namely ISMA) by adapting the weight coefficient and cooperating the reverse learning strategy in the expression of agents updating locations to enhance the algorithm's optimization performance. Many selected benchmark functions and the optimal operation of cascade reservoirs are applied to evaluate the performance of the proposed algorithm. Comparisons of the proposed approach's results with the various algorithms under the case situations show that the recommended solution produces better performance than the different competing algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3045975</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3128-9025</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0003-1037-7699</orcidid><orcidid>https://orcid.org/0000-0001-9450-600X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.226754-226772 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2474859268 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Classification algorithms dynamic weight Heuristic algorithms Hydroelectric power generation Hydroelectric power stations Mold optimal dispatching of cascade hydropower Optimization Particle swarm optimization Performance evaluation Reservoirs reverse learning Slime Slime mold algorithm Veins |
title | An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Slime%20Mold%20Algorithm%20and%20its%20Application%20for%20Optimal%20Operation%20of%20Cascade%20Hydropower%20Stations&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Trong-The&rft.date=2020&rft.volume=8&rft.spage=226754&rft.epage=226772&rft.pages=226754-226772&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3045975&rft_dat=%3Cproquest_cross%3E2474859268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474859268&rft_id=info:pmid/&rft_ieee_id=9300231&rft_doaj_id=oai_doaj_org_article_4fb1770cc005400a9d18afd514f2864d&rfr_iscdi=true |