Modified Leakage Rate Calculation Models of Natural Gas Pipelines

The leakage rate is an essential parameter for the risk assessment and failure analysis of natural gas pipelines. The leakage rate of a natural gas pipeline should be calculated quickly and accurately to minimize consequences. First, in this study, models to estimate the leakage rate of natural gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Xiao, Guanghua, Li, Xiaoyan, Yang, Daheng, Hou, Qingmin, Ho, Siu Chun Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Xiao, Guanghua
Li, Xiaoyan
Yang, Daheng
Hou, Qingmin
Ho, Siu Chun Michael
description The leakage rate is an essential parameter for the risk assessment and failure analysis of natural gas pipelines. The leakage rate of a natural gas pipeline should be calculated quickly and accurately to minimize consequences. First, in this study, models to estimate the leakage rate of natural gas pipelines are reclassified, and the theoretical range of application for each model is also analysed. Second, the impact of the leakage on the flow rate upstream of the leak point is considered, and the method of successive approximation is used to realize this feedback effect of flow rate change. Then, a modified hole-pipe model is developed to calculate the natural gas leakage rate in this paper. Compared with the leakage rate calculated by the hole-pipe model, the leakage rate calculated by the modified hole-pipe model is smaller and closer to the actual leakage rate due to the consideration of the feedback effect of the flow rate change. Finally, the leakage rate curves of the hole-pipe model and the modified hole-pipe model under different d/D conditions are obtained through simulation. The simulation results show that the modified hole-pipe model is able to calculate the leakage rate of any leak aperture, such as the hole-pipe model, and also at a higher accuracy level than the hole-pipe model.
doi_str_mv 10.1155/2020/6673107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474858857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474858857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b3a506a3785b6778a84874de1c2a29f0bd4cf5ac735f2c2456641800b7fea1193</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQgOFFFKzVm2dZ8KixO_vdYym1CvUDUfAWJsmubo1JzSaI_96UFDx6mjk8zMBLyCmwKwClJpxxNtHaCGBmj4xAaZEokGa_3xmXCXDxekiOYlwzxkGBHZHZXV0EH1xBVw4_8M3RJ2wdnWOZdyW2oa5oL1wZae3pPbZdgyVdYqSPYePKULl4TA48ltGd7OaYvFwvnuc3yepheTufrZJcaNYmmUDFNApjVaaNsWilNbJwkHPkU8-yQuZeYW6E8jznUmktwTKWGe8QYCrG5Hy4u2nqr87FNl3XXVP1L1MujbTKWmV6dTmovKljbJxPN034xOYnBZZuI6XbSOkuUs8vBv4eqgK_w3_6bNCuN87jn4apAbDiF_X0bjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474858857</pqid></control><display><type>article</type><title>Modified Leakage Rate Calculation Models of Natural Gas Pipelines</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Xiao, Guanghua ; Li, Xiaoyan ; Yang, Daheng ; Hou, Qingmin ; Ho, Siu Chun Michael</creator><contributor>Wang, Yufei ; Yufei Wang</contributor><creatorcontrib>Xiao, Guanghua ; Li, Xiaoyan ; Yang, Daheng ; Hou, Qingmin ; Ho, Siu Chun Michael ; Wang, Yufei ; Yufei Wang</creatorcontrib><description>The leakage rate is an essential parameter for the risk assessment and failure analysis of natural gas pipelines. The leakage rate of a natural gas pipeline should be calculated quickly and accurately to minimize consequences. First, in this study, models to estimate the leakage rate of natural gas pipelines are reclassified, and the theoretical range of application for each model is also analysed. Second, the impact of the leakage on the flow rate upstream of the leak point is considered, and the method of successive approximation is used to realize this feedback effect of flow rate change. Then, a modified hole-pipe model is developed to calculate the natural gas leakage rate in this paper. Compared with the leakage rate calculated by the hole-pipe model, the leakage rate calculated by the modified hole-pipe model is smaller and closer to the actual leakage rate due to the consideration of the feedback effect of the flow rate change. Finally, the leakage rate curves of the hole-pipe model and the modified hole-pipe model under different d/D conditions are obtained through simulation. The simulation results show that the modified hole-pipe model is able to calculate the leakage rate of any leak aperture, such as the hole-pipe model, and also at a higher accuracy level than the hole-pipe model.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/6673107</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Approximation ; Failure analysis ; Feedback ; Flow velocity ; Gas pipelines ; Impact analysis ; Leakage ; Mathematical models ; Mathematical problems ; Model accuracy ; Natural gas ; Pipes ; Reservoirs ; Risk assessment</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Qingmin Hou et al.</rights><rights>Copyright © 2020 Qingmin Hou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b3a506a3785b6778a84874de1c2a29f0bd4cf5ac735f2c2456641800b7fea1193</citedby><cites>FETCH-LOGICAL-c360t-b3a506a3785b6778a84874de1c2a29f0bd4cf5ac735f2c2456641800b7fea1193</cites><orcidid>0000-0003-3615-1292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><contributor>Wang, Yufei</contributor><contributor>Yufei Wang</contributor><creatorcontrib>Xiao, Guanghua</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Daheng</creatorcontrib><creatorcontrib>Hou, Qingmin</creatorcontrib><creatorcontrib>Ho, Siu Chun Michael</creatorcontrib><title>Modified Leakage Rate Calculation Models of Natural Gas Pipelines</title><title>Mathematical problems in engineering</title><description>The leakage rate is an essential parameter for the risk assessment and failure analysis of natural gas pipelines. The leakage rate of a natural gas pipeline should be calculated quickly and accurately to minimize consequences. First, in this study, models to estimate the leakage rate of natural gas pipelines are reclassified, and the theoretical range of application for each model is also analysed. Second, the impact of the leakage on the flow rate upstream of the leak point is considered, and the method of successive approximation is used to realize this feedback effect of flow rate change. Then, a modified hole-pipe model is developed to calculate the natural gas leakage rate in this paper. Compared with the leakage rate calculated by the hole-pipe model, the leakage rate calculated by the modified hole-pipe model is smaller and closer to the actual leakage rate due to the consideration of the feedback effect of the flow rate change. Finally, the leakage rate curves of the hole-pipe model and the modified hole-pipe model under different d/D conditions are obtained through simulation. The simulation results show that the modified hole-pipe model is able to calculate the leakage rate of any leak aperture, such as the hole-pipe model, and also at a higher accuracy level than the hole-pipe model.</description><subject>Approximation</subject><subject>Failure analysis</subject><subject>Feedback</subject><subject>Flow velocity</subject><subject>Gas pipelines</subject><subject>Impact analysis</subject><subject>Leakage</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Model accuracy</subject><subject>Natural gas</subject><subject>Pipes</subject><subject>Reservoirs</subject><subject>Risk assessment</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQgOFFFKzVm2dZ8KixO_vdYym1CvUDUfAWJsmubo1JzSaI_96UFDx6mjk8zMBLyCmwKwClJpxxNtHaCGBmj4xAaZEokGa_3xmXCXDxekiOYlwzxkGBHZHZXV0EH1xBVw4_8M3RJ2wdnWOZdyW2oa5oL1wZae3pPbZdgyVdYqSPYePKULl4TA48ltGd7OaYvFwvnuc3yepheTufrZJcaNYmmUDFNApjVaaNsWilNbJwkHPkU8-yQuZeYW6E8jznUmktwTKWGe8QYCrG5Hy4u2nqr87FNl3XXVP1L1MujbTKWmV6dTmovKljbJxPN034xOYnBZZuI6XbSOkuUs8vBv4eqgK_w3_6bNCuN87jn4apAbDiF_X0bjM</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xiao, Guanghua</creator><creator>Li, Xiaoyan</creator><creator>Yang, Daheng</creator><creator>Hou, Qingmin</creator><creator>Ho, Siu Chun Michael</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3615-1292</orcidid></search><sort><creationdate>2020</creationdate><title>Modified Leakage Rate Calculation Models of Natural Gas Pipelines</title><author>Xiao, Guanghua ; Li, Xiaoyan ; Yang, Daheng ; Hou, Qingmin ; Ho, Siu Chun Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b3a506a3785b6778a84874de1c2a29f0bd4cf5ac735f2c2456641800b7fea1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Failure analysis</topic><topic>Feedback</topic><topic>Flow velocity</topic><topic>Gas pipelines</topic><topic>Impact analysis</topic><topic>Leakage</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Model accuracy</topic><topic>Natural gas</topic><topic>Pipes</topic><topic>Reservoirs</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Guanghua</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Daheng</creatorcontrib><creatorcontrib>Hou, Qingmin</creatorcontrib><creatorcontrib>Ho, Siu Chun Michael</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Guanghua</au><au>Li, Xiaoyan</au><au>Yang, Daheng</au><au>Hou, Qingmin</au><au>Ho, Siu Chun Michael</au><au>Wang, Yufei</au><au>Yufei Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Leakage Rate Calculation Models of Natural Gas Pipelines</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The leakage rate is an essential parameter for the risk assessment and failure analysis of natural gas pipelines. The leakage rate of a natural gas pipeline should be calculated quickly and accurately to minimize consequences. First, in this study, models to estimate the leakage rate of natural gas pipelines are reclassified, and the theoretical range of application for each model is also analysed. Second, the impact of the leakage on the flow rate upstream of the leak point is considered, and the method of successive approximation is used to realize this feedback effect of flow rate change. Then, a modified hole-pipe model is developed to calculate the natural gas leakage rate in this paper. Compared with the leakage rate calculated by the hole-pipe model, the leakage rate calculated by the modified hole-pipe model is smaller and closer to the actual leakage rate due to the consideration of the feedback effect of the flow rate change. Finally, the leakage rate curves of the hole-pipe model and the modified hole-pipe model under different d/D conditions are obtained through simulation. The simulation results show that the modified hole-pipe model is able to calculate the leakage rate of any leak aperture, such as the hole-pipe model, and also at a higher accuracy level than the hole-pipe model.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6673107</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3615-1292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2474858857
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Approximation
Failure analysis
Feedback
Flow velocity
Gas pipelines
Impact analysis
Leakage
Mathematical models
Mathematical problems
Model accuracy
Natural gas
Pipes
Reservoirs
Risk assessment
title Modified Leakage Rate Calculation Models of Natural Gas Pipelines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Leakage%20Rate%20Calculation%20Models%20of%20Natural%20Gas%20Pipelines&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xiao,%20Guanghua&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/6673107&rft_dat=%3Cproquest_cross%3E2474858857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474858857&rft_id=info:pmid/&rfr_iscdi=true