Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links

Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-01, Vol.39 (2), p.475-480
Hauptverfasser: Xu, Zhaopeng, Sun, Chuanbowen, Ji, Tonghui, Manton, Jonathan H., Shieh, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 2
container_start_page 475
container_title Journal of lightwave technology
container_volume 39
creator Xu, Zhaopeng
Sun, Chuanbowen
Ji, Tonghui
Manton, Jonathan H.
Shieh, William
description Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.
doi_str_mv 10.1109/JLT.2020.3031363
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2474856268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9226070</ieee_id><sourcerecordid>2474856268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3c0fb86d90e7bed9768bd03149fbffade6f5f4d601c01760ac886bfa6722e0db3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD72gpuA6443SSdJlyo-KQ6M47qkzY1Gx3RMWnz8eiMjrg4czjmX-xFyxGDKGFSnd_VyyoHDVIBgQootMmGzmS44Z2KbTEAJUWjFy12yl9ILACtLrSbk8wrRuj5-mGipCZYusBtjxDDQexyjWWUZPvr4WpybhJYuownJYaQ1mhh8eKK5TO_7sPIhO_TyfTQr_20G3wfqA3147uNQLNB0z3S-HnyXF2sfXtMB2XFmlfDwT_fJ49Xl8uKmqOfXtxdnddEJoYdCdOBaLW0FqFq0lZK6tfnDsnKtc8aidDNXWgmsA6YkmE5r2TojFecIthX75GSzu479-4hpaF76MYZ8suGlKvVMcqlzCjapLvYpRXTNOvo3E78aBs0v3ybzbX75Nn98c-V4U_GI-B-vOJegQPwAbFp4dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474856268</pqid></control><display><type>article</type><title>Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links</title><source>IEEE Xplore</source><creator>Xu, Zhaopeng ; Sun, Chuanbowen ; Ji, Tonghui ; Manton, Jonathan H. ; Shieh, William</creator><creatorcontrib>Xu, Zhaopeng ; Sun, Chuanbowen ; Ji, Tonghui ; Manton, Jonathan H. ; Shieh, William</creatorcontrib><description>Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3031363</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computer centers ; Data centers ; Direct detection ; Equalization ; Equalizers ; Fiber nonlinear optics ; Learning ; Links ; Neural networks ; nonlinearity ; Optical communication ; Optical fiber communication ; Optical fibers ; Pulse amplitude modulation ; Recurrent neural networks ; Symbols ; System effectiveness ; Training ; transfer learning</subject><ispartof>Journal of lightwave technology, 2021-01, Vol.39 (2), p.475-480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3c0fb86d90e7bed9768bd03149fbffade6f5f4d601c01760ac886bfa6722e0db3</citedby><cites>FETCH-LOGICAL-c338t-3c0fb86d90e7bed9768bd03149fbffade6f5f4d601c01760ac886bfa6722e0db3</cites><orcidid>0000-0002-7925-1894 ; 0000-0001-6476-9001 ; 0000-0003-1777-5403 ; 0000-0002-2441-588X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9226070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9226070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Zhaopeng</creatorcontrib><creatorcontrib>Sun, Chuanbowen</creatorcontrib><creatorcontrib>Ji, Tonghui</creatorcontrib><creatorcontrib>Manton, Jonathan H.</creatorcontrib><creatorcontrib>Shieh, William</creatorcontrib><title>Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.</description><subject>Artificial neural networks</subject><subject>Computer centers</subject><subject>Data centers</subject><subject>Direct detection</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>Fiber nonlinear optics</subject><subject>Learning</subject><subject>Links</subject><subject>Neural networks</subject><subject>nonlinearity</subject><subject>Optical communication</subject><subject>Optical fiber communication</subject><subject>Optical fibers</subject><subject>Pulse amplitude modulation</subject><subject>Recurrent neural networks</subject><subject>Symbols</subject><subject>System effectiveness</subject><subject>Training</subject><subject>transfer learning</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLxDAUhYMoOD72gpuA6443SSdJlyo-KQ6M47qkzY1Gx3RMWnz8eiMjrg4czjmX-xFyxGDKGFSnd_VyyoHDVIBgQootMmGzmS44Z2KbTEAJUWjFy12yl9ILACtLrSbk8wrRuj5-mGipCZYusBtjxDDQexyjWWUZPvr4WpybhJYuownJYaQ1mhh8eKK5TO_7sPIhO_TyfTQr_20G3wfqA3147uNQLNB0z3S-HnyXF2sfXtMB2XFmlfDwT_fJ49Xl8uKmqOfXtxdnddEJoYdCdOBaLW0FqFq0lZK6tfnDsnKtc8aidDNXWgmsA6YkmE5r2TojFecIthX75GSzu479-4hpaF76MYZ8suGlKvVMcqlzCjapLvYpRXTNOvo3E78aBs0v3ybzbX75Nn98c-V4U_GI-B-vOJegQPwAbFp4dA</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Xu, Zhaopeng</creator><creator>Sun, Chuanbowen</creator><creator>Ji, Tonghui</creator><creator>Manton, Jonathan H.</creator><creator>Shieh, William</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7925-1894</orcidid><orcidid>https://orcid.org/0000-0001-6476-9001</orcidid><orcidid>https://orcid.org/0000-0003-1777-5403</orcidid><orcidid>https://orcid.org/0000-0002-2441-588X</orcidid></search><sort><creationdate>20210115</creationdate><title>Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links</title><author>Xu, Zhaopeng ; Sun, Chuanbowen ; Ji, Tonghui ; Manton, Jonathan H. ; Shieh, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3c0fb86d90e7bed9768bd03149fbffade6f5f4d601c01760ac886bfa6722e0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer centers</topic><topic>Data centers</topic><topic>Direct detection</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>Fiber nonlinear optics</topic><topic>Learning</topic><topic>Links</topic><topic>Neural networks</topic><topic>nonlinearity</topic><topic>Optical communication</topic><topic>Optical fiber communication</topic><topic>Optical fibers</topic><topic>Pulse amplitude modulation</topic><topic>Recurrent neural networks</topic><topic>Symbols</topic><topic>System effectiveness</topic><topic>Training</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhaopeng</creatorcontrib><creatorcontrib>Sun, Chuanbowen</creatorcontrib><creatorcontrib>Ji, Tonghui</creatorcontrib><creatorcontrib>Manton, Jonathan H.</creatorcontrib><creatorcontrib>Shieh, William</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Zhaopeng</au><au>Sun, Chuanbowen</au><au>Ji, Tonghui</au><au>Manton, Jonathan H.</au><au>Shieh, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>475</spage><epage>480</epage><pages>475-480</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Neural network (NN)-based nonlinear equalizers have been shown effective for various types of short-reach direct detection systems. However, they work best for a certain channel condition and need to be trained again when the channel environment is changed, which hinders the efficient deployment of future optical switched data center networks. In this article, we propose transfer learning (TL)-aided feedforward neural networks (FNN) and recurrent neural networks (RNN) for nonlinear equalization in short-reach direct detection optical links, which enables a fast transition to new equalizers when the channel condition is changed. A 50-Gb/s 20-km pulse amplitude modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and links of varying bit-rates and fiber lengths are selected as the source system. Experimental results show that TL could help reduce the number of epochs and training symbols of FNNs/RNNs required for nonlinear equalization in the target system, taking advantage of FNNs/RNNs trained for source systems. A reduction of 90%/87.5% in epochs and 62.5%/53.8% in training symbols is achieved with FNNs/RNNs transferred from the most similar source system. We also find that FNNs can be transferred to their corresponding RNNs for equalization in the target system, while TL from RNNs to FNNs cannot work properly. TL enables a fast transition between different NN-based equalizers, which is critical for future optical switched data center networks, where the optical links need to be dynamically reconfigured.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3031363</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7925-1894</orcidid><orcidid>https://orcid.org/0000-0001-6476-9001</orcidid><orcidid>https://orcid.org/0000-0003-1777-5403</orcidid><orcidid>https://orcid.org/0000-0002-2441-588X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-01, Vol.39 (2), p.475-480
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2474856268
source IEEE Xplore
subjects Artificial neural networks
Computer centers
Data centers
Direct detection
Equalization
Equalizers
Fiber nonlinear optics
Learning
Links
Neural networks
nonlinearity
Optical communication
Optical fiber communication
Optical fibers
Pulse amplitude modulation
Recurrent neural networks
Symbols
System effectiveness
Training
transfer learning
title Feedforward and Recurrent Neural Network-Based Transfer Learning for Nonlinear Equalization in Short-Reach Optical Links
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedforward%20and%20Recurrent%20Neural%20Network-Based%20Transfer%20Learning%20for%20Nonlinear%20Equalization%20in%20Short-Reach%20Optical%20Links&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Xu,%20Zhaopeng&rft.date=2021-01-15&rft.volume=39&rft.issue=2&rft.spage=475&rft.epage=480&rft.pages=475-480&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3031363&rft_dat=%3Cproquest_RIE%3E2474856268%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474856268&rft_id=info:pmid/&rft_ieee_id=9226070&rfr_iscdi=true