High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry
Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-01, Vol.39 (2), p.627-632 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 2 |
container_start_page | 627 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Li, Shupeng Qing, Ting Fu, Jianbin Wang, Xiangchuan Pan, Shilong |
description | Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved. |
doi_str_mv | 10.1109/JLT.2020.3033280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2474855919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9238490</ieee_id><sourcerecordid>2474855919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujiYjeTbws8Tx8bdd1PRIUwUC4wLnpujccgQ3bodl_b3HE03uHz-f9-BLySGFEKaiXj8V6xIDBiAPnLIMrMqBCZDFjlF-TAUjO40yy5Jbceb8DoEmSyQExs2r7GY-tPTlju2h1bCtr9tG0ytFFa2dqX4bmFfemi5Zo_MnhAes22viq3vZY_CdFy8q65sd8YzSvW3RBaw7Yuu6e3JRm7_HhUodkM31bT2bxYvU-n4wXsWWKtnFhUmQFTYWQIuOUcVOKghZgizzNGeeyUEWCKPPwUGlkaoClDFTJbGk5lYIPyXM_9-iarxP6Vu-ak6vDSs0SmWRCKKoCBT0VjvXeYamPrjoY12kK-hykDkHqc5D6EmRQnnqlQsR_XDGeJQr4L4Tbbvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474855919</pqid></control><display><type>article</type><title>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shupeng ; Qing, Ting ; Fu, Jianbin ; Wang, Xiangchuan ; Pan, Shilong</creator><creatorcontrib>Li, Shupeng ; Qing, Ting ; Fu, Jianbin ; Wang, Xiangchuan ; Pan, Shilong</creatorcontrib><description>Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3033280</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Computer networks ; Delay ; Fiber optics ; Fiber-optic microwave interferometry ; Frequency measurement ; Interference fringes ; Interferometry ; Microwave frequencies ; Microwave measurement ; Microwave theory and techniques ; Optical attenuators ; Optical fiber sensors ; Optical fibers ; Optical interferometry ; optical transfer delay measurement ; Optics ; Systems stability ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2021-01, Vol.39 (2), p.627-632</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</citedby><cites>FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</cites><orcidid>0000-0002-1230-8403 ; 0000-0002-6614-4504 ; 0000-0003-2620-7272 ; 0000-0002-8112-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9238490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9238490$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shupeng</creatorcontrib><creatorcontrib>Qing, Ting</creatorcontrib><creatorcontrib>Fu, Jianbin</creatorcontrib><creatorcontrib>Wang, Xiangchuan</creatorcontrib><creatorcontrib>Pan, Shilong</creatorcontrib><title>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.</description><subject>Accuracy</subject><subject>Computer networks</subject><subject>Delay</subject><subject>Fiber optics</subject><subject>Fiber-optic microwave interferometry</subject><subject>Frequency measurement</subject><subject>Interference fringes</subject><subject>Interferometry</subject><subject>Microwave frequencies</subject><subject>Microwave measurement</subject><subject>Microwave theory and techniques</subject><subject>Optical attenuators</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical interferometry</subject><subject>optical transfer delay measurement</subject><subject>Optics</subject><subject>Systems stability</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9PwjAUxxujiYjeTbws8Tx8bdd1PRIUwUC4wLnpujccgQ3bodl_b3HE03uHz-f9-BLySGFEKaiXj8V6xIDBiAPnLIMrMqBCZDFjlF-TAUjO40yy5Jbceb8DoEmSyQExs2r7GY-tPTlju2h1bCtr9tG0ytFFa2dqX4bmFfemi5Zo_MnhAes22viq3vZY_CdFy8q65sd8YzSvW3RBaw7Yuu6e3JRm7_HhUodkM31bT2bxYvU-n4wXsWWKtnFhUmQFTYWQIuOUcVOKghZgizzNGeeyUEWCKPPwUGlkaoClDFTJbGk5lYIPyXM_9-iarxP6Vu-ak6vDSs0SmWRCKKoCBT0VjvXeYamPrjoY12kK-hykDkHqc5D6EmRQnnqlQsR_XDGeJQr4L4Tbbvw</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Li, Shupeng</creator><creator>Qing, Ting</creator><creator>Fu, Jianbin</creator><creator>Wang, Xiangchuan</creator><creator>Pan, Shilong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1230-8403</orcidid><orcidid>https://orcid.org/0000-0002-6614-4504</orcidid><orcidid>https://orcid.org/0000-0003-2620-7272</orcidid><orcidid>https://orcid.org/0000-0002-8112-1271</orcidid></search><sort><creationdate>20210115</creationdate><title>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</title><author>Li, Shupeng ; Qing, Ting ; Fu, Jianbin ; Wang, Xiangchuan ; Pan, Shilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Computer networks</topic><topic>Delay</topic><topic>Fiber optics</topic><topic>Fiber-optic microwave interferometry</topic><topic>Frequency measurement</topic><topic>Interference fringes</topic><topic>Interferometry</topic><topic>Microwave frequencies</topic><topic>Microwave measurement</topic><topic>Microwave theory and techniques</topic><topic>Optical attenuators</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical interferometry</topic><topic>optical transfer delay measurement</topic><topic>Optics</topic><topic>Systems stability</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shupeng</creatorcontrib><creatorcontrib>Qing, Ting</creatorcontrib><creatorcontrib>Fu, Jianbin</creatorcontrib><creatorcontrib>Wang, Xiangchuan</creatorcontrib><creatorcontrib>Pan, Shilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shupeng</au><au>Qing, Ting</au><au>Fu, Jianbin</au><au>Wang, Xiangchuan</au><au>Pan, Shilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>627</spage><epage>632</epage><pages>627-632</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3033280</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1230-8403</orcidid><orcidid>https://orcid.org/0000-0002-6614-4504</orcidid><orcidid>https://orcid.org/0000-0003-2620-7272</orcidid><orcidid>https://orcid.org/0000-0002-8112-1271</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-01, Vol.39 (2), p.627-632 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2474855919 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Computer networks Delay Fiber optics Fiber-optic microwave interferometry Frequency measurement Interference fringes Interferometry Microwave frequencies Microwave measurement Microwave theory and techniques Optical attenuators Optical fiber sensors Optical fibers Optical interferometry optical transfer delay measurement Optics Systems stability Wavelength division multiplexing |
title | High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Accuracy%20Optical%20Fiber%20Transfer%20Delay%20Measurement%20Using%20Fiber-Optic%20Microwave%20Interferometry&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Li,%20Shupeng&rft.date=2021-01-15&rft.volume=39&rft.issue=2&rft.spage=627&rft.epage=632&rft.pages=627-632&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3033280&rft_dat=%3Cproquest_RIE%3E2474855919%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474855919&rft_id=info:pmid/&rft_ieee_id=9238490&rfr_iscdi=true |