High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry

Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-01, Vol.39 (2), p.627-632
Hauptverfasser: Li, Shupeng, Qing, Ting, Fu, Jianbin, Wang, Xiangchuan, Pan, Shilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 2
container_start_page 627
container_title Journal of lightwave technology
container_volume 39
creator Li, Shupeng
Qing, Ting
Fu, Jianbin
Wang, Xiangchuan
Pan, Shilong
description Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.
doi_str_mv 10.1109/JLT.2020.3033280
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2474855919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9238490</ieee_id><sourcerecordid>2474855919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujiYjeTbws8Tx8bdd1PRIUwUC4wLnpujccgQ3bodl_b3HE03uHz-f9-BLySGFEKaiXj8V6xIDBiAPnLIMrMqBCZDFjlF-TAUjO40yy5Jbceb8DoEmSyQExs2r7GY-tPTlju2h1bCtr9tG0ytFFa2dqX4bmFfemi5Zo_MnhAes22viq3vZY_CdFy8q65sd8YzSvW3RBaw7Yuu6e3JRm7_HhUodkM31bT2bxYvU-n4wXsWWKtnFhUmQFTYWQIuOUcVOKghZgizzNGeeyUEWCKPPwUGlkaoClDFTJbGk5lYIPyXM_9-iarxP6Vu-ak6vDSs0SmWRCKKoCBT0VjvXeYamPrjoY12kK-hykDkHqc5D6EmRQnnqlQsR_XDGeJQr4L4Tbbvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474855919</pqid></control><display><type>article</type><title>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shupeng ; Qing, Ting ; Fu, Jianbin ; Wang, Xiangchuan ; Pan, Shilong</creator><creatorcontrib>Li, Shupeng ; Qing, Ting ; Fu, Jianbin ; Wang, Xiangchuan ; Pan, Shilong</creatorcontrib><description>Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3033280</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Computer networks ; Delay ; Fiber optics ; Fiber-optic microwave interferometry ; Frequency measurement ; Interference fringes ; Interferometry ; Microwave frequencies ; Microwave measurement ; Microwave theory and techniques ; Optical attenuators ; Optical fiber sensors ; Optical fibers ; Optical interferometry ; optical transfer delay measurement ; Optics ; Systems stability ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2021-01, Vol.39 (2), p.627-632</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</citedby><cites>FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</cites><orcidid>0000-0002-1230-8403 ; 0000-0002-6614-4504 ; 0000-0003-2620-7272 ; 0000-0002-8112-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9238490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9238490$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shupeng</creatorcontrib><creatorcontrib>Qing, Ting</creatorcontrib><creatorcontrib>Fu, Jianbin</creatorcontrib><creatorcontrib>Wang, Xiangchuan</creatorcontrib><creatorcontrib>Pan, Shilong</creatorcontrib><title>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.</description><subject>Accuracy</subject><subject>Computer networks</subject><subject>Delay</subject><subject>Fiber optics</subject><subject>Fiber-optic microwave interferometry</subject><subject>Frequency measurement</subject><subject>Interference fringes</subject><subject>Interferometry</subject><subject>Microwave frequencies</subject><subject>Microwave measurement</subject><subject>Microwave theory and techniques</subject><subject>Optical attenuators</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical interferometry</subject><subject>optical transfer delay measurement</subject><subject>Optics</subject><subject>Systems stability</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9PwjAUxxujiYjeTbws8Tx8bdd1PRIUwUC4wLnpujccgQ3bodl_b3HE03uHz-f9-BLySGFEKaiXj8V6xIDBiAPnLIMrMqBCZDFjlF-TAUjO40yy5Jbceb8DoEmSyQExs2r7GY-tPTlju2h1bCtr9tG0ytFFa2dqX4bmFfemi5Zo_MnhAes22viq3vZY_CdFy8q65sd8YzSvW3RBaw7Yuu6e3JRm7_HhUodkM31bT2bxYvU-n4wXsWWKtnFhUmQFTYWQIuOUcVOKghZgizzNGeeyUEWCKPPwUGlkaoClDFTJbGk5lYIPyXM_9-iarxP6Vu-ak6vDSs0SmWRCKKoCBT0VjvXeYamPrjoY12kK-hykDkHqc5D6EmRQnnqlQsR_XDGeJQr4L4Tbbvw</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Li, Shupeng</creator><creator>Qing, Ting</creator><creator>Fu, Jianbin</creator><creator>Wang, Xiangchuan</creator><creator>Pan, Shilong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1230-8403</orcidid><orcidid>https://orcid.org/0000-0002-6614-4504</orcidid><orcidid>https://orcid.org/0000-0003-2620-7272</orcidid><orcidid>https://orcid.org/0000-0002-8112-1271</orcidid></search><sort><creationdate>20210115</creationdate><title>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</title><author>Li, Shupeng ; Qing, Ting ; Fu, Jianbin ; Wang, Xiangchuan ; Pan, Shilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-da6e2d16557583123af5d1d0cdb6b2337d9d4ee7b221fa76a026209f2cfc31753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Computer networks</topic><topic>Delay</topic><topic>Fiber optics</topic><topic>Fiber-optic microwave interferometry</topic><topic>Frequency measurement</topic><topic>Interference fringes</topic><topic>Interferometry</topic><topic>Microwave frequencies</topic><topic>Microwave measurement</topic><topic>Microwave theory and techniques</topic><topic>Optical attenuators</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical interferometry</topic><topic>optical transfer delay measurement</topic><topic>Optics</topic><topic>Systems stability</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shupeng</creatorcontrib><creatorcontrib>Qing, Ting</creatorcontrib><creatorcontrib>Fu, Jianbin</creatorcontrib><creatorcontrib>Wang, Xiangchuan</creatorcontrib><creatorcontrib>Pan, Shilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shupeng</au><au>Qing, Ting</au><au>Fu, Jianbin</au><au>Wang, Xiangchuan</au><au>Pan, Shilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>627</spage><epage>632</epage><pages>627-632</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Optical fiber transfer delay (OFTD) measurement with high accuracy and stability is an urgent demand for many applications such as fiber-optic sensors and fiber-based distributed systems. In this article, we propose a novel method using fiber-optic microwave interferometry to meet the above practice demand. Two incoherent optical carriers with different wavelengths are coupled into an intensity modulator driven by a microwave signal. The intensity-modulated signal is then divided into two portions through a dense wavelength division multiplexer. One portion directly passes through the reference path while the other undergoes the transfer delay of a fiber under test (FUT). After photo-detection, two probe signals that undergo different delays are recovered and superimposed. By sweeping the microwave frequency, periodic microwave interference fringe is generated. Then, OFTD measurement is achieved by measuring the frequency of the last valley in the interference fringe. Experimental results show that a system stability of ±0.02 ps, an accuracy of ±0.07 ps, and a measurement range of at least 500 m are achieved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3033280</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1230-8403</orcidid><orcidid>https://orcid.org/0000-0002-6614-4504</orcidid><orcidid>https://orcid.org/0000-0003-2620-7272</orcidid><orcidid>https://orcid.org/0000-0002-8112-1271</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-01, Vol.39 (2), p.627-632
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2474855919
source IEEE Electronic Library (IEL)
subjects Accuracy
Computer networks
Delay
Fiber optics
Fiber-optic microwave interferometry
Frequency measurement
Interference fringes
Interferometry
Microwave frequencies
Microwave measurement
Microwave theory and techniques
Optical attenuators
Optical fiber sensors
Optical fibers
Optical interferometry
optical transfer delay measurement
Optics
Systems stability
Wavelength division multiplexing
title High-Accuracy Optical Fiber Transfer Delay Measurement Using Fiber-Optic Microwave Interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Accuracy%20Optical%20Fiber%20Transfer%20Delay%20Measurement%20Using%20Fiber-Optic%20Microwave%20Interferometry&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Li,%20Shupeng&rft.date=2021-01-15&rft.volume=39&rft.issue=2&rft.spage=627&rft.epage=632&rft.pages=627-632&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3033280&rft_dat=%3Cproquest_RIE%3E2474855919%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474855919&rft_id=info:pmid/&rft_ieee_id=9238490&rfr_iscdi=true