Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility

Artificial synapses are key elements for the nervous system which is an emulation of sensory and motor neuron signal transmission. Here, the design and fabrication of redox‐behavior the metal carbide nanosheets, termed MXene artificial synapse, which uses a highly‐conductive MXene electrode, are rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-01, Vol.31 (1), p.n/a
Hauptverfasser: Wei, Huanhuan, Yu, Haiyang, Gong, Jiangdong, Ma, Mingxue, Han, Hong, Ni, Yao, Zhang, Shuo, Xu, Wentao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced functional materials
container_volume 31
creator Wei, Huanhuan
Yu, Haiyang
Gong, Jiangdong
Ma, Mingxue
Han, Hong
Ni, Yao
Zhang, Shuo
Xu, Wentao
description Artificial synapses are key elements for the nervous system which is an emulation of sensory and motor neuron signal transmission. Here, the design and fabrication of redox‐behavior the metal carbide nanosheets, termed MXene artificial synapse, which uses a highly‐conductive MXene electrode, are reported. Benefiting from the special working mechanism of ion migration with adsorption and insertion, the device achieves world‐record power consumption (460 fW) of two‐terminal synaptic devices, and so far, the bidirectionally functioned synaptic device could effectively respond to ultra‐small stimuli at an amplitude of ±80 mV, even exceeding that of a biological synapse. Potential applications have also been demonstrated, such as dendritic integration and memory enhancement. The special strategy and superior electrical characteristics of the bidirectionally functioned electronic device pave the way to high‐power‐efficiency brain‐inspired electronics and artificial peripheral systems. A redox‐behavior metal carbide nanosheet, termed MXene artificial synapse, is designed and fabricated, which exhibits bidirectionally short‐term plasticity and excellent responsibility to millivolt‐level stimuli. The device is used in dendritic engineering for conditional learning, logic operation, emotional regulation, and memory enhancement. These properties are applicable to future low‐power and hypersensitive brain‐inspired electronics.
doi_str_mv 10.1002/adfm.202007232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474780812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474780812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-e69b9c78ce48d44c84c684a561243a6e59beedb02e50a9b303b3b34ab5e888703</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxYMoWKtXzwueU_cr2c2xftQKLUpV6Mlls5ngljSJu6k1_71bKvUoc5gZ5vcew4uiS4JHBGN6rYtyPaKYYiwoo0fRgKQkjRmm8vgwk-VpdOb9CmMiBOOD6H0BRfON5kuoAY1dZ0trrK7QS1_r1gPa2u4D3djCOjCdbepweq607wLV9UjXBZr2LTgPtbed_QK0AN82YcltFYjz6KTUlYeL3z6M3ib3r7fTePb08Hg7nsWGEUFjSLM8M0Ia4LLg3EhuUsl1khLKmU4hyXKAIscUEqyznGGWh-I6T0BKKTAbRld739Y1nxvwnVo1Gxe-9YpywYXEktBAjfaUcY33DkrVOrvWrlcEq12GapehOmQYBNlesLUV9P_Qanw3mf9pfwDVKna-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474780812</pqid></control><display><type>article</type><title>Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Huanhuan ; Yu, Haiyang ; Gong, Jiangdong ; Ma, Mingxue ; Han, Hong ; Ni, Yao ; Zhang, Shuo ; Xu, Wentao</creator><creatorcontrib>Wei, Huanhuan ; Yu, Haiyang ; Gong, Jiangdong ; Ma, Mingxue ; Han, Hong ; Ni, Yao ; Zhang, Shuo ; Xu, Wentao</creatorcontrib><description>Artificial synapses are key elements for the nervous system which is an emulation of sensory and motor neuron signal transmission. Here, the design and fabrication of redox‐behavior the metal carbide nanosheets, termed MXene artificial synapse, which uses a highly‐conductive MXene electrode, are reported. Benefiting from the special working mechanism of ion migration with adsorption and insertion, the device achieves world‐record power consumption (460 fW) of two‐terminal synaptic devices, and so far, the bidirectionally functioned synaptic device could effectively respond to ultra‐small stimuli at an amplitude of ±80 mV, even exceeding that of a biological synapse. Potential applications have also been demonstrated, such as dendritic integration and memory enhancement. The special strategy and superior electrical characteristics of the bidirectionally functioned electronic device pave the way to high‐power‐efficiency brain‐inspired electronics and artificial peripheral systems. A redox‐behavior metal carbide nanosheet, termed MXene artificial synapse, is designed and fabricated, which exhibits bidirectionally short‐term plasticity and excellent responsibility to millivolt‐level stimuli. The device is used in dendritic engineering for conditional learning, logic operation, emotional regulation, and memory enhancement. These properties are applicable to future low‐power and hypersensitive brain‐inspired electronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007232</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>artificial synapse ; hypersensitivity ; Ion migration ; Materials science ; Metal carbides ; MXene ; MXenes ; Nervous system ; Power consumption ; Power management ; redox behavior ; Signal transmission ; Synapses ; synaptic plasticity</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (1), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-e69b9c78ce48d44c84c684a561243a6e59beedb02e50a9b303b3b34ab5e888703</citedby><cites>FETCH-LOGICAL-c3172-e69b9c78ce48d44c84c684a561243a6e59beedb02e50a9b303b3b34ab5e888703</cites><orcidid>0000-0002-1054-6037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007232$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007232$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wei, Huanhuan</creatorcontrib><creatorcontrib>Yu, Haiyang</creatorcontrib><creatorcontrib>Gong, Jiangdong</creatorcontrib><creatorcontrib>Ma, Mingxue</creatorcontrib><creatorcontrib>Han, Hong</creatorcontrib><creatorcontrib>Ni, Yao</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Xu, Wentao</creatorcontrib><title>Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility</title><title>Advanced functional materials</title><description>Artificial synapses are key elements for the nervous system which is an emulation of sensory and motor neuron signal transmission. Here, the design and fabrication of redox‐behavior the metal carbide nanosheets, termed MXene artificial synapse, which uses a highly‐conductive MXene electrode, are reported. Benefiting from the special working mechanism of ion migration with adsorption and insertion, the device achieves world‐record power consumption (460 fW) of two‐terminal synaptic devices, and so far, the bidirectionally functioned synaptic device could effectively respond to ultra‐small stimuli at an amplitude of ±80 mV, even exceeding that of a biological synapse. Potential applications have also been demonstrated, such as dendritic integration and memory enhancement. The special strategy and superior electrical characteristics of the bidirectionally functioned electronic device pave the way to high‐power‐efficiency brain‐inspired electronics and artificial peripheral systems. A redox‐behavior metal carbide nanosheet, termed MXene artificial synapse, is designed and fabricated, which exhibits bidirectionally short‐term plasticity and excellent responsibility to millivolt‐level stimuli. The device is used in dendritic engineering for conditional learning, logic operation, emotional regulation, and memory enhancement. These properties are applicable to future low‐power and hypersensitive brain‐inspired electronics.</description><subject>artificial synapse</subject><subject>hypersensitivity</subject><subject>Ion migration</subject><subject>Materials science</subject><subject>Metal carbides</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nervous system</subject><subject>Power consumption</subject><subject>Power management</subject><subject>redox behavior</subject><subject>Signal transmission</subject><subject>Synapses</subject><subject>synaptic plasticity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxYMoWKtXzwueU_cr2c2xftQKLUpV6Mlls5ngljSJu6k1_71bKvUoc5gZ5vcew4uiS4JHBGN6rYtyPaKYYiwoo0fRgKQkjRmm8vgwk-VpdOb9CmMiBOOD6H0BRfON5kuoAY1dZ0trrK7QS1_r1gPa2u4D3djCOjCdbepweq607wLV9UjXBZr2LTgPtbed_QK0AN82YcltFYjz6KTUlYeL3z6M3ib3r7fTePb08Hg7nsWGEUFjSLM8M0Ia4LLg3EhuUsl1khLKmU4hyXKAIscUEqyznGGWh-I6T0BKKTAbRld739Y1nxvwnVo1Gxe-9YpywYXEktBAjfaUcY33DkrVOrvWrlcEq12GapehOmQYBNlesLUV9P_Qanw3mf9pfwDVKna-</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wei, Huanhuan</creator><creator>Yu, Haiyang</creator><creator>Gong, Jiangdong</creator><creator>Ma, Mingxue</creator><creator>Han, Hong</creator><creator>Ni, Yao</creator><creator>Zhang, Shuo</creator><creator>Xu, Wentao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1054-6037</orcidid></search><sort><creationdate>20210101</creationdate><title>Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility</title><author>Wei, Huanhuan ; Yu, Haiyang ; Gong, Jiangdong ; Ma, Mingxue ; Han, Hong ; Ni, Yao ; Zhang, Shuo ; Xu, Wentao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-e69b9c78ce48d44c84c684a561243a6e59beedb02e50a9b303b3b34ab5e888703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial synapse</topic><topic>hypersensitivity</topic><topic>Ion migration</topic><topic>Materials science</topic><topic>Metal carbides</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nervous system</topic><topic>Power consumption</topic><topic>Power management</topic><topic>redox behavior</topic><topic>Signal transmission</topic><topic>Synapses</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Huanhuan</creatorcontrib><creatorcontrib>Yu, Haiyang</creatorcontrib><creatorcontrib>Gong, Jiangdong</creatorcontrib><creatorcontrib>Ma, Mingxue</creatorcontrib><creatorcontrib>Han, Hong</creatorcontrib><creatorcontrib>Ni, Yao</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Xu, Wentao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Huanhuan</au><au>Yu, Haiyang</au><au>Gong, Jiangdong</au><au>Ma, Mingxue</au><au>Han, Hong</au><au>Ni, Yao</au><au>Zhang, Shuo</au><au>Xu, Wentao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility</atitle><jtitle>Advanced functional materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Artificial synapses are key elements for the nervous system which is an emulation of sensory and motor neuron signal transmission. Here, the design and fabrication of redox‐behavior the metal carbide nanosheets, termed MXene artificial synapse, which uses a highly‐conductive MXene electrode, are reported. Benefiting from the special working mechanism of ion migration with adsorption and insertion, the device achieves world‐record power consumption (460 fW) of two‐terminal synaptic devices, and so far, the bidirectionally functioned synaptic device could effectively respond to ultra‐small stimuli at an amplitude of ±80 mV, even exceeding that of a biological synapse. Potential applications have also been demonstrated, such as dendritic integration and memory enhancement. The special strategy and superior electrical characteristics of the bidirectionally functioned electronic device pave the way to high‐power‐efficiency brain‐inspired electronics and artificial peripheral systems. A redox‐behavior metal carbide nanosheet, termed MXene artificial synapse, is designed and fabricated, which exhibits bidirectionally short‐term plasticity and excellent responsibility to millivolt‐level stimuli. The device is used in dendritic engineering for conditional learning, logic operation, emotional regulation, and memory enhancement. These properties are applicable to future low‐power and hypersensitive brain‐inspired electronics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007232</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1054-6037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-01, Vol.31 (1), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2474780812
source Wiley Online Library Journals Frontfile Complete
subjects artificial synapse
hypersensitivity
Ion migration
Materials science
Metal carbides
MXene
MXenes
Nervous system
Power consumption
Power management
redox behavior
Signal transmission
Synapses
synaptic plasticity
title Redox MXene Artificial Synapse with Bidirectional Plasticity and Hypersensitive Responsibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20MXene%20Artificial%20Synapse%20with%20Bidirectional%20Plasticity%20and%20Hypersensitive%20Responsibility&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Huanhuan&rft.date=2021-01-01&rft.volume=31&rft.issue=1&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007232&rft_dat=%3Cproquest_cross%3E2474780812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474780812&rft_id=info:pmid/&rfr_iscdi=true