Kinetics and Removal Efficiency of Nitrogen in Constructed Wetlands Cultivated with Different Plant Species for Treating Swine Wastewater Applied at Different Rates

The present study sought to evaluate the efficiency and kinetics of nitrogen removal in Horizontal Subsurface Flow Constructed Wetlands (HSSF-CWs) cultivated with different plant species used in the treatment of swine wastewater (SWW), under different nitrogen loading rates (LR TKN ). For this purpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2021, Vol.232 (1), Article 6
Hauptverfasser: Fia, Fátima Resende Luiz, de Matos, Antonio Teixeira, Fia, Ronaldo, de Matos, Mateus Pimentel, Borges, Alisson Carraro, Baptestini, Gheila Corrêa Ferres
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Water, air, and soil pollution
container_volume 232
creator Fia, Fátima Resende Luiz
de Matos, Antonio Teixeira
Fia, Ronaldo
de Matos, Mateus Pimentel
Borges, Alisson Carraro
Baptestini, Gheila Corrêa Ferres
description The present study sought to evaluate the efficiency and kinetics of nitrogen removal in Horizontal Subsurface Flow Constructed Wetlands (HSSF-CWs) cultivated with different plant species used in the treatment of swine wastewater (SWW), under different nitrogen loading rates (LR TKN ). For this purpose, nine tanks measuring 2.0 × 0.5 × 0.6 m were used, one maintained without plants (CW 1 ), while in the others two plant species were evaluated: CW 3 , CW 5 , CW 7 , and CW 9 were planted with Tifton 85 grass ( Cynodon spp.) and CW 2 , CW 4 , CW 6 , and CW 8 were planted with cattail ( Typha latifolia ). The CWs received TKN application rates between 110 and 413 kg ha −1 day −1 , and the removal efficiencies ranged from 27.6 to 44.9%. The average mass removal rates (MRR) for TKN and NH 4 + ranged from 45.3 to 115.9 kg ha −1 day −1 and 28.9 to 66.5 kg ha −1 day −1 , respectively. Tifton 85 grass and cattail contributed, respectively, to 2.22 to 8.7% and 0.03 to 1.67% of the TKN mass removed by the CWs (MRR), equivalent to extraction rates of 2.72 to 4.94 kg ha −1 day −1 and 0.04 to 1.11 kg ha −1 day −1 . Coefficients estimated by conventional, modified, and residual first-order models ranged from 0.017 to 0.0187 day −1 , 0.0691 to 0.1285 day −1 , and 0.0298 to 0.0715 day −1 , respectively. The modified first-order model and that with residual, due to their higher R 2 values ( R 2  > 93%), indicated a good fit and considerable reliability of these equations to describe the processes of nitrogen removal from swine wastewater treated in HSSF-CW, and due to their mathematical simplicity and improvements in the representation of real behavior, they should be preferred for modeling of these systems.
doi_str_mv 10.1007/s11270-020-04972-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2474583484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650601384</galeid><sourcerecordid>A650601384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ad4044c373ac38ca45727952bab62ae23bf3bbe3928d411cbf9554baf0cb3bd03</originalsourceid><addsrcrecordid>eNp9kd9qHCEYxaU00G3SF-iV0OtJ_DfjzOWyTduQ0JYkJZeizufWMKtTdbPkffqgMZlCe1VFhOP5nU84CL2n5JQSIs8ypUyShrB6xCBZ071CK9pK3rCBs9doRarcdIMc3qC3Od-TuoZertDvSx-geJuxDiO-hl180BM-d85bD8E-4ujwV19S3ELAPuBNDLmkvS0w4jsoU6Uy3uyn4h_0s3bw5Sf-6J2DBKHg79VQ8M0MNS1jFxO-TaCLD1t8c6iT8Z3OBQ4VTXg9z5OvEbr8E3Bdn_IJOnJ6yvDuz32Mfnw6v918aa6-fb7YrK8ay9u-NHoURAjLJdeW91aLVjI5tMxo0zENjBvHjQE-sH4UlFrjhrYVRjtiDTcj4cfow5I7p_hrD7mo-7hPoY5UTEjR9lz0orpOF9dWT6B8cLEkbeseYedtDOB81dddSzpC-QvAFsCmmHMCp-bkdzo9KkrUc31qqU_V-tRLfaqrEF-gXM1hC-nvX_5DPQGWnKBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474583484</pqid></control><display><type>article</type><title>Kinetics and Removal Efficiency of Nitrogen in Constructed Wetlands Cultivated with Different Plant Species for Treating Swine Wastewater Applied at Different Rates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fia, Fátima Resende Luiz ; de Matos, Antonio Teixeira ; Fia, Ronaldo ; de Matos, Mateus Pimentel ; Borges, Alisson Carraro ; Baptestini, Gheila Corrêa Ferres</creator><creatorcontrib>Fia, Fátima Resende Luiz ; de Matos, Antonio Teixeira ; Fia, Ronaldo ; de Matos, Mateus Pimentel ; Borges, Alisson Carraro ; Baptestini, Gheila Corrêa Ferres</creatorcontrib><description>The present study sought to evaluate the efficiency and kinetics of nitrogen removal in Horizontal Subsurface Flow Constructed Wetlands (HSSF-CWs) cultivated with different plant species used in the treatment of swine wastewater (SWW), under different nitrogen loading rates (LR TKN ). For this purpose, nine tanks measuring 2.0 × 0.5 × 0.6 m were used, one maintained without plants (CW 1 ), while in the others two plant species were evaluated: CW 3 , CW 5 , CW 7 , and CW 9 were planted with Tifton 85 grass ( Cynodon spp.) and CW 2 , CW 4 , CW 6 , and CW 8 were planted with cattail ( Typha latifolia ). The CWs received TKN application rates between 110 and 413 kg ha −1 day −1 , and the removal efficiencies ranged from 27.6 to 44.9%. The average mass removal rates (MRR) for TKN and NH 4 + ranged from 45.3 to 115.9 kg ha −1 day −1 and 28.9 to 66.5 kg ha −1 day −1 , respectively. Tifton 85 grass and cattail contributed, respectively, to 2.22 to 8.7% and 0.03 to 1.67% of the TKN mass removed by the CWs (MRR), equivalent to extraction rates of 2.72 to 4.94 kg ha −1 day −1 and 0.04 to 1.11 kg ha −1 day −1 . Coefficients estimated by conventional, modified, and residual first-order models ranged from 0.017 to 0.0187 day −1 , 0.0691 to 0.1285 day −1 , and 0.0298 to 0.0715 day −1 , respectively. The modified first-order model and that with residual, due to their higher R 2 values ( R 2  &gt; 93%), indicated a good fit and considerable reliability of these equations to describe the processes of nitrogen removal from swine wastewater treated in HSSF-CW, and due to their mathematical simplicity and improvements in the representation of real behavior, they should be preferred for modeling of these systems.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-020-04972-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal wastes ; Aquatic plants ; Artificial wetlands ; Atmospheric Protection/Air Quality Control/Air Pollution ; Climate Change/Climate Change Impacts ; Coefficients ; Constructed wetlands ; Earth and Environmental Science ; Environment ; Environmental monitoring ; Evaluation ; Flowers &amp; plants ; Freshwater plants ; Grasses ; Hydrogeology ; Kinetics ; Loading rate ; Mathematical models ; Nitrogen ; Nitrogen removal ; Plant species ; Purification ; Removal ; Sewage ; Soil Science &amp; Conservation ; Species ; Swine ; Tanks ; Typha ; Wastewater ; Wastewater treatment ; Water Quality/Water Pollution ; Wetlands</subject><ispartof>Water, air, and soil pollution, 2021, Vol.232 (1), Article 6</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ad4044c373ac38ca45727952bab62ae23bf3bbe3928d411cbf9554baf0cb3bd03</citedby><cites>FETCH-LOGICAL-c358t-ad4044c373ac38ca45727952bab62ae23bf3bbe3928d411cbf9554baf0cb3bd03</cites><orcidid>0000-0002-9729-6439 ; 0000-0001-6824-0869 ; 0000-0002-9645-6162 ; 0000-0001-8384-7466 ; 0000-0003-3926-7004 ; 0000-0003-4791-8399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-020-04972-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-020-04972-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fia, Fátima Resende Luiz</creatorcontrib><creatorcontrib>de Matos, Antonio Teixeira</creatorcontrib><creatorcontrib>Fia, Ronaldo</creatorcontrib><creatorcontrib>de Matos, Mateus Pimentel</creatorcontrib><creatorcontrib>Borges, Alisson Carraro</creatorcontrib><creatorcontrib>Baptestini, Gheila Corrêa Ferres</creatorcontrib><title>Kinetics and Removal Efficiency of Nitrogen in Constructed Wetlands Cultivated with Different Plant Species for Treating Swine Wastewater Applied at Different Rates</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>The present study sought to evaluate the efficiency and kinetics of nitrogen removal in Horizontal Subsurface Flow Constructed Wetlands (HSSF-CWs) cultivated with different plant species used in the treatment of swine wastewater (SWW), under different nitrogen loading rates (LR TKN ). For this purpose, nine tanks measuring 2.0 × 0.5 × 0.6 m were used, one maintained without plants (CW 1 ), while in the others two plant species were evaluated: CW 3 , CW 5 , CW 7 , and CW 9 were planted with Tifton 85 grass ( Cynodon spp.) and CW 2 , CW 4 , CW 6 , and CW 8 were planted with cattail ( Typha latifolia ). The CWs received TKN application rates between 110 and 413 kg ha −1 day −1 , and the removal efficiencies ranged from 27.6 to 44.9%. The average mass removal rates (MRR) for TKN and NH 4 + ranged from 45.3 to 115.9 kg ha −1 day −1 and 28.9 to 66.5 kg ha −1 day −1 , respectively. Tifton 85 grass and cattail contributed, respectively, to 2.22 to 8.7% and 0.03 to 1.67% of the TKN mass removed by the CWs (MRR), equivalent to extraction rates of 2.72 to 4.94 kg ha −1 day −1 and 0.04 to 1.11 kg ha −1 day −1 . Coefficients estimated by conventional, modified, and residual first-order models ranged from 0.017 to 0.0187 day −1 , 0.0691 to 0.1285 day −1 , and 0.0298 to 0.0715 day −1 , respectively. The modified first-order model and that with residual, due to their higher R 2 values ( R 2  &gt; 93%), indicated a good fit and considerable reliability of these equations to describe the processes of nitrogen removal from swine wastewater treated in HSSF-CW, and due to their mathematical simplicity and improvements in the representation of real behavior, they should be preferred for modeling of these systems.</description><subject>Animal wastes</subject><subject>Aquatic plants</subject><subject>Artificial wetlands</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Coefficients</subject><subject>Constructed wetlands</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Evaluation</subject><subject>Flowers &amp; plants</subject><subject>Freshwater plants</subject><subject>Grasses</subject><subject>Hydrogeology</subject><subject>Kinetics</subject><subject>Loading rate</subject><subject>Mathematical models</subject><subject>Nitrogen</subject><subject>Nitrogen removal</subject><subject>Plant species</subject><subject>Purification</subject><subject>Removal</subject><subject>Sewage</subject><subject>Soil Science &amp; Conservation</subject><subject>Species</subject><subject>Swine</subject><subject>Tanks</subject><subject>Typha</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water Quality/Water Pollution</subject><subject>Wetlands</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9qHCEYxaU00G3SF-iV0OtJ_DfjzOWyTduQ0JYkJZeizufWMKtTdbPkffqgMZlCe1VFhOP5nU84CL2n5JQSIs8ypUyShrB6xCBZ071CK9pK3rCBs9doRarcdIMc3qC3Od-TuoZertDvSx-geJuxDiO-hl180BM-d85bD8E-4ujwV19S3ELAPuBNDLmkvS0w4jsoU6Uy3uyn4h_0s3bw5Sf-6J2DBKHg79VQ8M0MNS1jFxO-TaCLD1t8c6iT8Z3OBQ4VTXg9z5OvEbr8E3Bdn_IJOnJ6yvDuz32Mfnw6v918aa6-fb7YrK8ay9u-NHoURAjLJdeW91aLVjI5tMxo0zENjBvHjQE-sH4UlFrjhrYVRjtiDTcj4cfow5I7p_hrD7mo-7hPoY5UTEjR9lz0orpOF9dWT6B8cLEkbeseYedtDOB81dddSzpC-QvAFsCmmHMCp-bkdzo9KkrUc31qqU_V-tRLfaqrEF-gXM1hC-nvX_5DPQGWnKBk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fia, Fátima Resende Luiz</creator><creator>de Matos, Antonio Teixeira</creator><creator>Fia, Ronaldo</creator><creator>de Matos, Mateus Pimentel</creator><creator>Borges, Alisson Carraro</creator><creator>Baptestini, Gheila Corrêa Ferres</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9729-6439</orcidid><orcidid>https://orcid.org/0000-0001-6824-0869</orcidid><orcidid>https://orcid.org/0000-0002-9645-6162</orcidid><orcidid>https://orcid.org/0000-0001-8384-7466</orcidid><orcidid>https://orcid.org/0000-0003-3926-7004</orcidid><orcidid>https://orcid.org/0000-0003-4791-8399</orcidid></search><sort><creationdate>2021</creationdate><title>Kinetics and Removal Efficiency of Nitrogen in Constructed Wetlands Cultivated with Different Plant Species for Treating Swine Wastewater Applied at Different Rates</title><author>Fia, Fátima Resende Luiz ; de Matos, Antonio Teixeira ; Fia, Ronaldo ; de Matos, Mateus Pimentel ; Borges, Alisson Carraro ; Baptestini, Gheila Corrêa Ferres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ad4044c373ac38ca45727952bab62ae23bf3bbe3928d411cbf9554baf0cb3bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal wastes</topic><topic>Aquatic plants</topic><topic>Artificial wetlands</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Coefficients</topic><topic>Constructed wetlands</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Evaluation</topic><topic>Flowers &amp; plants</topic><topic>Freshwater plants</topic><topic>Grasses</topic><topic>Hydrogeology</topic><topic>Kinetics</topic><topic>Loading rate</topic><topic>Mathematical models</topic><topic>Nitrogen</topic><topic>Nitrogen removal</topic><topic>Plant species</topic><topic>Purification</topic><topic>Removal</topic><topic>Sewage</topic><topic>Soil Science &amp; Conservation</topic><topic>Species</topic><topic>Swine</topic><topic>Tanks</topic><topic>Typha</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water Quality/Water Pollution</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fia, Fátima Resende Luiz</creatorcontrib><creatorcontrib>de Matos, Antonio Teixeira</creatorcontrib><creatorcontrib>Fia, Ronaldo</creatorcontrib><creatorcontrib>de Matos, Mateus Pimentel</creatorcontrib><creatorcontrib>Borges, Alisson Carraro</creatorcontrib><creatorcontrib>Baptestini, Gheila Corrêa Ferres</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fia, Fátima Resende Luiz</au><au>de Matos, Antonio Teixeira</au><au>Fia, Ronaldo</au><au>de Matos, Mateus Pimentel</au><au>Borges, Alisson Carraro</au><au>Baptestini, Gheila Corrêa Ferres</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and Removal Efficiency of Nitrogen in Constructed Wetlands Cultivated with Different Plant Species for Treating Swine Wastewater Applied at Different Rates</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2021</date><risdate>2021</risdate><volume>232</volume><issue>1</issue><artnum>6</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>The present study sought to evaluate the efficiency and kinetics of nitrogen removal in Horizontal Subsurface Flow Constructed Wetlands (HSSF-CWs) cultivated with different plant species used in the treatment of swine wastewater (SWW), under different nitrogen loading rates (LR TKN ). For this purpose, nine tanks measuring 2.0 × 0.5 × 0.6 m were used, one maintained without plants (CW 1 ), while in the others two plant species were evaluated: CW 3 , CW 5 , CW 7 , and CW 9 were planted with Tifton 85 grass ( Cynodon spp.) and CW 2 , CW 4 , CW 6 , and CW 8 were planted with cattail ( Typha latifolia ). The CWs received TKN application rates between 110 and 413 kg ha −1 day −1 , and the removal efficiencies ranged from 27.6 to 44.9%. The average mass removal rates (MRR) for TKN and NH 4 + ranged from 45.3 to 115.9 kg ha −1 day −1 and 28.9 to 66.5 kg ha −1 day −1 , respectively. Tifton 85 grass and cattail contributed, respectively, to 2.22 to 8.7% and 0.03 to 1.67% of the TKN mass removed by the CWs (MRR), equivalent to extraction rates of 2.72 to 4.94 kg ha −1 day −1 and 0.04 to 1.11 kg ha −1 day −1 . Coefficients estimated by conventional, modified, and residual first-order models ranged from 0.017 to 0.0187 day −1 , 0.0691 to 0.1285 day −1 , and 0.0298 to 0.0715 day −1 , respectively. The modified first-order model and that with residual, due to their higher R 2 values ( R 2  &gt; 93%), indicated a good fit and considerable reliability of these equations to describe the processes of nitrogen removal from swine wastewater treated in HSSF-CW, and due to their mathematical simplicity and improvements in the representation of real behavior, they should be preferred for modeling of these systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-020-04972-6</doi><orcidid>https://orcid.org/0000-0002-9729-6439</orcidid><orcidid>https://orcid.org/0000-0001-6824-0869</orcidid><orcidid>https://orcid.org/0000-0002-9645-6162</orcidid><orcidid>https://orcid.org/0000-0001-8384-7466</orcidid><orcidid>https://orcid.org/0000-0003-3926-7004</orcidid><orcidid>https://orcid.org/0000-0003-4791-8399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2021, Vol.232 (1), Article 6
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_journals_2474583484
source SpringerLink Journals - AutoHoldings
subjects Animal wastes
Aquatic plants
Artificial wetlands
Atmospheric Protection/Air Quality Control/Air Pollution
Climate Change/Climate Change Impacts
Coefficients
Constructed wetlands
Earth and Environmental Science
Environment
Environmental monitoring
Evaluation
Flowers & plants
Freshwater plants
Grasses
Hydrogeology
Kinetics
Loading rate
Mathematical models
Nitrogen
Nitrogen removal
Plant species
Purification
Removal
Sewage
Soil Science & Conservation
Species
Swine
Tanks
Typha
Wastewater
Wastewater treatment
Water Quality/Water Pollution
Wetlands
title Kinetics and Removal Efficiency of Nitrogen in Constructed Wetlands Cultivated with Different Plant Species for Treating Swine Wastewater Applied at Different Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20Removal%20Efficiency%20of%20Nitrogen%20in%20Constructed%20Wetlands%20Cultivated%20with%20Different%20Plant%20Species%20for%20Treating%20Swine%20Wastewater%20Applied%20at%20Different%20Rates&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Fia,%20F%C3%A1tima%20Resende%20Luiz&rft.date=2021&rft.volume=232&rft.issue=1&rft.artnum=6&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-020-04972-6&rft_dat=%3Cgale_proqu%3EA650601384%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474583484&rft_id=info:pmid/&rft_galeid=A650601384&rfr_iscdi=true