Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries

The construction and design of highly efficient and inexpensive bifunctional oxygen electrocatalysts substitute for noble-metal-based catalysts is highly desirable for the development of rechargeable Zn-air battery (ZAB). In this work, a bifunctional oxygen electrocatalysts of based on ultrafine CoF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2021-03, Vol.14 (3), p.868-878
Hauptverfasser: Lei, Zhao, Tan, Yangyang, Zhang, Zeyi, Wu, Wei, Cheng, Niancai, Chen, Runzhe, Mu, Shichun, Sun, Xueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878
container_issue 3
container_start_page 868
container_title Nano research
container_volume 14
creator Lei, Zhao
Tan, Yangyang
Zhang, Zeyi
Wu, Wei
Cheng, Niancai
Chen, Runzhe
Mu, Shichun
Sun, Xueliang
description The construction and design of highly efficient and inexpensive bifunctional oxygen electrocatalysts substitute for noble-metal-based catalysts is highly desirable for the development of rechargeable Zn-air battery (ZAB). In this work, a bifunctional oxygen electrocatalysts of based on ultrafine CoFe alloy (4-5 nm) dispersed in defects enriched hollow porous Co-N-doped carbons, made by annealing SiO 2 coated zeolitic imidazolate framework-67 (ZIF-67) encapsulated Fe ions. The hollow porous structure not only exposed the active sites inside ZIF-67, but also provided efficient charge and mass transfer. The strong synergetic coupling among high-density CoFe alloys and Co-N x sites in Co, N-doped carbon species ensures high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. First-principles simulations reveal that the synergistic promotion effect between CoFe alloy and Co-N site effectively reduced the formation energy of from O* to OH*. The optimized CoFe-Co@PNC exhibits outstanding electrocatalytic stability and activity with the overpotential of only 320 mV for OER at 10 mA·cm −2 and the half-wave potential of 0.887 V for ORR, outperforming that of most recent reported bifunctional electrocatalysts. A rechargeable ZAB constructed with CoFe-Co@PNC as the air cathode displays long-term cyclability for over 200 h and high power density (152.8 mW·cm −2 ). Flexible solid-state ZAB with our CoFe-Co@PNC as the air cathode possesses a high open circuit potential (OCP) up to 1.46 V as well as good bending flexibility. This universal structure design provides an attractive and instructive model for the application of nanomaterials derived from MOF in the field of sustainable flexible energy applications device.
doi_str_mv 10.1007/s12274-020-3127-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474583172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474583172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-490e801120290c41df9e20be522f3a3e736d3008768a26b000a5cf95d4fb1e143</originalsourceid><addsrcrecordid>eNp1kU1uFDEQhVsoSISQA2RnibWJ7fb0zxINBJAi2JC1Ve0uzzhy7KbsVjLcLLfDowGxijcuub73Sq7XNFdSfJBC9NdZKtVrLpTgrVQ9H14153IcBy7qOftXS6XfNG9zvheiU1IP583zJ3RoS2YYyds9zmyfQkiPbEmU1sy2iX_nc1pqwwJNKVbyYcJ5rg-PvuzZGgqB8xEreoPX28QixLQAFW8DZgaZTd6t0RafIgSWng47jAxDnUrJQoFwyIW5RIzQ7oF2CFNA5gI--WORU_Az--2j5eCJTVAKksf8rnntIGS8_HtfNHc3n39uv_LbH1--bT_ectvKrnA9ChyElEqoUVgtZzeiEhNulHIttNi33dwKMfTdAKqb6rZgY924mbWbJErdXjTvT74LpV8r5mLu00r1K9ko3evN0MpeVUqeKEspZ0JnFvIPQAcjhTkmZE4JmZqQOSZkhqpRJ02ubNwh_Xd-WfQHSS6XXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474583172</pqid></control><display><type>article</type><title>Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries</title><source>SpringerLink Journals</source><creator>Lei, Zhao ; Tan, Yangyang ; Zhang, Zeyi ; Wu, Wei ; Cheng, Niancai ; Chen, Runzhe ; Mu, Shichun ; Sun, Xueliang</creator><creatorcontrib>Lei, Zhao ; Tan, Yangyang ; Zhang, Zeyi ; Wu, Wei ; Cheng, Niancai ; Chen, Runzhe ; Mu, Shichun ; Sun, Xueliang</creatorcontrib><description>The construction and design of highly efficient and inexpensive bifunctional oxygen electrocatalysts substitute for noble-metal-based catalysts is highly desirable for the development of rechargeable Zn-air battery (ZAB). In this work, a bifunctional oxygen electrocatalysts of based on ultrafine CoFe alloy (4-5 nm) dispersed in defects enriched hollow porous Co-N-doped carbons, made by annealing SiO 2 coated zeolitic imidazolate framework-67 (ZIF-67) encapsulated Fe ions. The hollow porous structure not only exposed the active sites inside ZIF-67, but also provided efficient charge and mass transfer. The strong synergetic coupling among high-density CoFe alloys and Co-N x sites in Co, N-doped carbon species ensures high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. First-principles simulations reveal that the synergistic promotion effect between CoFe alloy and Co-N site effectively reduced the formation energy of from O* to OH*. The optimized CoFe-Co@PNC exhibits outstanding electrocatalytic stability and activity with the overpotential of only 320 mV for OER at 10 mA·cm −2 and the half-wave potential of 0.887 V for ORR, outperforming that of most recent reported bifunctional electrocatalysts. A rechargeable ZAB constructed with CoFe-Co@PNC as the air cathode displays long-term cyclability for over 200 h and high power density (152.8 mW·cm −2 ). Flexible solid-state ZAB with our CoFe-Co@PNC as the air cathode possesses a high open circuit potential (OCP) up to 1.46 V as well as good bending flexibility. This universal structure design provides an attractive and instructive model for the application of nanomaterials derived from MOF in the field of sustainable flexible energy applications device.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-3127-8</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Alloys ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysts ; Cathodes ; Charge transfer ; Chemical reduction ; Chemistry and Materials Science ; Condensed Matter Physics ; Construction ; Defect annealing ; Electrocatalysts ; First principles ; Free energy ; Heat of formation ; Intermetallic compounds ; Mass transfer ; Materials Science ; Metal air batteries ; Metal-organic frameworks ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Noble metals ; Open circuit voltage ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Rechargeable batteries ; Research Article ; Silicon dioxide ; Ultrafines ; Zeolites ; Zinc-oxygen batteries</subject><ispartof>Nano research, 2021-03, Vol.14 (3), p.868-878</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-490e801120290c41df9e20be522f3a3e736d3008768a26b000a5cf95d4fb1e143</citedby><cites>FETCH-LOGICAL-c316t-490e801120290c41df9e20be522f3a3e736d3008768a26b000a5cf95d4fb1e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-3127-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-3127-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lei, Zhao</creatorcontrib><creatorcontrib>Tan, Yangyang</creatorcontrib><creatorcontrib>Zhang, Zeyi</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Cheng, Niancai</creatorcontrib><creatorcontrib>Chen, Runzhe</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><title>Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>The construction and design of highly efficient and inexpensive bifunctional oxygen electrocatalysts substitute for noble-metal-based catalysts is highly desirable for the development of rechargeable Zn-air battery (ZAB). In this work, a bifunctional oxygen electrocatalysts of based on ultrafine CoFe alloy (4-5 nm) dispersed in defects enriched hollow porous Co-N-doped carbons, made by annealing SiO 2 coated zeolitic imidazolate framework-67 (ZIF-67) encapsulated Fe ions. The hollow porous structure not only exposed the active sites inside ZIF-67, but also provided efficient charge and mass transfer. The strong synergetic coupling among high-density CoFe alloys and Co-N x sites in Co, N-doped carbon species ensures high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. First-principles simulations reveal that the synergistic promotion effect between CoFe alloy and Co-N site effectively reduced the formation energy of from O* to OH*. The optimized CoFe-Co@PNC exhibits outstanding electrocatalytic stability and activity with the overpotential of only 320 mV for OER at 10 mA·cm −2 and the half-wave potential of 0.887 V for ORR, outperforming that of most recent reported bifunctional electrocatalysts. A rechargeable ZAB constructed with CoFe-Co@PNC as the air cathode displays long-term cyclability for over 200 h and high power density (152.8 mW·cm −2 ). Flexible solid-state ZAB with our CoFe-Co@PNC as the air cathode possesses a high open circuit potential (OCP) up to 1.46 V as well as good bending flexibility. This universal structure design provides an attractive and instructive model for the application of nanomaterials derived from MOF in the field of sustainable flexible energy applications device.</description><subject>Alloys</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Construction</subject><subject>Defect annealing</subject><subject>Electrocatalysts</subject><subject>First principles</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Intermetallic compounds</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Metal air batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Noble metals</subject><subject>Open circuit voltage</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Silicon dioxide</subject><subject>Ultrafines</subject><subject>Zeolites</subject><subject>Zinc-oxygen batteries</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1uFDEQhVsoSISQA2RnibWJ7fb0zxINBJAi2JC1Ve0uzzhy7KbsVjLcLLfDowGxijcuub73Sq7XNFdSfJBC9NdZKtVrLpTgrVQ9H14153IcBy7qOftXS6XfNG9zvheiU1IP583zJ3RoS2YYyds9zmyfQkiPbEmU1sy2iX_nc1pqwwJNKVbyYcJ5rg-PvuzZGgqB8xEreoPX28QixLQAFW8DZgaZTd6t0RafIgSWng47jAxDnUrJQoFwyIW5RIzQ7oF2CFNA5gI--WORU_Az--2j5eCJTVAKksf8rnntIGS8_HtfNHc3n39uv_LbH1--bT_ectvKrnA9ChyElEqoUVgtZzeiEhNulHIttNi33dwKMfTdAKqb6rZgY924mbWbJErdXjTvT74LpV8r5mLu00r1K9ko3evN0MpeVUqeKEspZ0JnFvIPQAcjhTkmZE4JmZqQOSZkhqpRJ02ubNwh_Xd-WfQHSS6XXQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Lei, Zhao</creator><creator>Tan, Yangyang</creator><creator>Zhang, Zeyi</creator><creator>Wu, Wei</creator><creator>Cheng, Niancai</creator><creator>Chen, Runzhe</creator><creator>Mu, Shichun</creator><creator>Sun, Xueliang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries</title><author>Lei, Zhao ; Tan, Yangyang ; Zhang, Zeyi ; Wu, Wei ; Cheng, Niancai ; Chen, Runzhe ; Mu, Shichun ; Sun, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-490e801120290c41df9e20be522f3a3e736d3008768a26b000a5cf95d4fb1e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Construction</topic><topic>Defect annealing</topic><topic>Electrocatalysts</topic><topic>First principles</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Intermetallic compounds</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Metal air batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Noble metals</topic><topic>Open circuit voltage</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Silicon dioxide</topic><topic>Ultrafines</topic><topic>Zeolites</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Zhao</creatorcontrib><creatorcontrib>Tan, Yangyang</creatorcontrib><creatorcontrib>Zhang, Zeyi</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Cheng, Niancai</creatorcontrib><creatorcontrib>Chen, Runzhe</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Zhao</au><au>Tan, Yangyang</au><au>Zhang, Zeyi</au><au>Wu, Wei</au><au>Cheng, Niancai</au><au>Chen, Runzhe</au><au>Mu, Shichun</au><au>Sun, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>14</volume><issue>3</issue><spage>868</spage><epage>878</epage><pages>868-878</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The construction and design of highly efficient and inexpensive bifunctional oxygen electrocatalysts substitute for noble-metal-based catalysts is highly desirable for the development of rechargeable Zn-air battery (ZAB). In this work, a bifunctional oxygen electrocatalysts of based on ultrafine CoFe alloy (4-5 nm) dispersed in defects enriched hollow porous Co-N-doped carbons, made by annealing SiO 2 coated zeolitic imidazolate framework-67 (ZIF-67) encapsulated Fe ions. The hollow porous structure not only exposed the active sites inside ZIF-67, but also provided efficient charge and mass transfer. The strong synergetic coupling among high-density CoFe alloys and Co-N x sites in Co, N-doped carbon species ensures high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. First-principles simulations reveal that the synergistic promotion effect between CoFe alloy and Co-N site effectively reduced the formation energy of from O* to OH*. The optimized CoFe-Co@PNC exhibits outstanding electrocatalytic stability and activity with the overpotential of only 320 mV for OER at 10 mA·cm −2 and the half-wave potential of 0.887 V for ORR, outperforming that of most recent reported bifunctional electrocatalysts. A rechargeable ZAB constructed with CoFe-Co@PNC as the air cathode displays long-term cyclability for over 200 h and high power density (152.8 mW·cm −2 ). Flexible solid-state ZAB with our CoFe-Co@PNC as the air cathode possesses a high open circuit potential (OCP) up to 1.46 V as well as good bending flexibility. This universal structure design provides an attractive and instructive model for the application of nanomaterials derived from MOF in the field of sustainable flexible energy applications device.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-3127-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2021-03, Vol.14 (3), p.868-878
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2474583172
source SpringerLink Journals
subjects Alloys
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysts
Cathodes
Charge transfer
Chemical reduction
Chemistry and Materials Science
Condensed Matter Physics
Construction
Defect annealing
Electrocatalysts
First principles
Free energy
Heat of formation
Intermetallic compounds
Mass transfer
Materials Science
Metal air batteries
Metal-organic frameworks
Nanomaterials
Nanoparticles
Nanotechnology
Noble metals
Open circuit voltage
Oxygen
Oxygen evolution reactions
Oxygen reduction reactions
Rechargeable batteries
Research Article
Silicon dioxide
Ultrafines
Zeolites
Zinc-oxygen batteries
title Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20enriched%20hollow%20porous%20Co-N-doped%20carbons%20embedded%20with%20ultrafine%20CoFe/Co%20nanoparticles%20as%20bifunctional%20oxygen%20electrocatalyst%20for%20rechargeable%20flexible%20solid%20zinc-air%20batteries&rft.jtitle=Nano%20research&rft.au=Lei,%20Zhao&rft.date=2021-03-01&rft.volume=14&rft.issue=3&rft.spage=868&rft.epage=878&rft.pages=868-878&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-3127-8&rft_dat=%3Cproquest_cross%3E2474583172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474583172&rft_id=info:pmid/&rfr_iscdi=true