Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering

Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2021-03, Vol.14 (3), p.858-867
Hauptverfasser: Mennucci, Carlo, Chowdhury, Debasree, Manzato, Giacomo, Barelli, Matteo, Chittofrati, Roberto, Martella, Christian, Buatier de Mongeot, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 867
container_issue 3
container_start_page 858
container_title Nano research
container_volume 14
creator Mennucci, Carlo
Chowdhury, Debasree
Manzato, Giacomo
Barelli, Matteo
Chittofrati, Roberto
Martella, Christian
Buatier de Mongeot, Francesco
description Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm 2 ) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO 2 /Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.
doi_str_mv 10.1007/s12274-020-3125-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474583031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474583031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8Fz9FkkrbJURa_YMGLew5JO1mzdNuadGHXX29LFU_OZWbgfd9hHkJuOLvjjJX3iQOUkjJgVHDI6eGELLjWirKxTn9nDvKcXKS0ZawALtWCrFc2bpDaiDbzDR6CazBrbdulIYYeM2ywGmJXY8o82mEfQ7vJ-samXddmH0cXQx2-7BDGDdtNaBEnxRU587ZJeP3TL8n66fF9-UJXb8-vy4cVrUSuBwoKHAB6z53UwspC517x0rqCoXZKCVEXAFzXjFVe-DL3IHTNlXTcClRSXJLbObeP3ece02C23T6240kDspS5EkzwUcVnVRW7lCJ608ews_FoODMTPTPTMyM9M9Ezh9EDsyf100MY_5L_N30D4L9zkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474583031</pqid></control><display><type>article</type><title>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mennucci, Carlo ; Chowdhury, Debasree ; Manzato, Giacomo ; Barelli, Matteo ; Chittofrati, Roberto ; Martella, Christian ; Buatier de Mongeot, Francesco</creator><creatorcontrib>Mennucci, Carlo ; Chowdhury, Debasree ; Manzato, Giacomo ; Barelli, Matteo ; Chittofrati, Roberto ; Martella, Christian ; Buatier de Mongeot, Francesco</creatorcontrib><description>Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm 2 ) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO 2 /Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-3125-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Arrays ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Dimers ; Electrodes ; Hybridization ; Lattice vibration ; Materials Science ; Morphology ; Nanotechnology ; Near infrared radiation ; Optical properties ; Photons ; Photovoltaic cells ; Photovoltaics ; Plasmonics ; Red shift ; Research Article ; Silicon dioxide ; Transport properties</subject><ispartof>Nano research, 2021-03, Vol.14 (3), p.858-867</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</citedby><cites>FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-3125-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-3125-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mennucci, Carlo</creatorcontrib><creatorcontrib>Chowdhury, Debasree</creatorcontrib><creatorcontrib>Manzato, Giacomo</creatorcontrib><creatorcontrib>Barelli, Matteo</creatorcontrib><creatorcontrib>Chittofrati, Roberto</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Buatier de Mongeot, Francesco</creatorcontrib><title>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm 2 ) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO 2 /Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.</description><subject>Arrays</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dimers</subject><subject>Electrodes</subject><subject>Hybridization</subject><subject>Lattice vibration</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Near infrared radiation</subject><subject>Optical properties</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Plasmonics</subject><subject>Red shift</subject><subject>Research Article</subject><subject>Silicon dioxide</subject><subject>Transport properties</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8Fz9FkkrbJURa_YMGLew5JO1mzdNuadGHXX29LFU_OZWbgfd9hHkJuOLvjjJX3iQOUkjJgVHDI6eGELLjWirKxTn9nDvKcXKS0ZawALtWCrFc2bpDaiDbzDR6CazBrbdulIYYeM2ywGmJXY8o82mEfQ7vJ-samXddmH0cXQx2-7BDGDdtNaBEnxRU587ZJeP3TL8n66fF9-UJXb8-vy4cVrUSuBwoKHAB6z53UwspC517x0rqCoXZKCVEXAFzXjFVe-DL3IHTNlXTcClRSXJLbObeP3ece02C23T6240kDspS5EkzwUcVnVRW7lCJ608ews_FoODMTPTPTMyM9M9Ezh9EDsyf100MY_5L_N30D4L9zkQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mennucci, Carlo</creator><creator>Chowdhury, Debasree</creator><creator>Manzato, Giacomo</creator><creator>Barelli, Matteo</creator><creator>Chittofrati, Roberto</creator><creator>Martella, Christian</creator><creator>Buatier de Mongeot, Francesco</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</title><author>Mennucci, Carlo ; Chowdhury, Debasree ; Manzato, Giacomo ; Barelli, Matteo ; Chittofrati, Roberto ; Martella, Christian ; Buatier de Mongeot, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dimers</topic><topic>Electrodes</topic><topic>Hybridization</topic><topic>Lattice vibration</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Near infrared radiation</topic><topic>Optical properties</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Plasmonics</topic><topic>Red shift</topic><topic>Research Article</topic><topic>Silicon dioxide</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mennucci, Carlo</creatorcontrib><creatorcontrib>Chowdhury, Debasree</creatorcontrib><creatorcontrib>Manzato, Giacomo</creatorcontrib><creatorcontrib>Barelli, Matteo</creatorcontrib><creatorcontrib>Chittofrati, Roberto</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Buatier de Mongeot, Francesco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mennucci, Carlo</au><au>Chowdhury, Debasree</au><au>Manzato, Giacomo</au><au>Barelli, Matteo</au><au>Chittofrati, Roberto</au><au>Martella, Christian</au><au>Buatier de Mongeot, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>14</volume><issue>3</issue><spage>858</spage><epage>867</epage><pages>858-867</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm 2 ) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO 2 /Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-3125-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2021-03, Vol.14 (3), p.858-867
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2474583031
source SpringerLink Journals - AutoHoldings
subjects Arrays
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Dimers
Electrodes
Hybridization
Lattice vibration
Materials Science
Morphology
Nanotechnology
Near infrared radiation
Optical properties
Photons
Photovoltaic cells
Photovoltaics
Plasmonics
Red shift
Research Article
Silicon dioxide
Transport properties
title Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20flexible%20nanostripe%20electrodes%20featuring%20plasmon%20hybridization%20engineering&rft.jtitle=Nano%20research&rft.au=Mennucci,%20Carlo&rft.date=2021-03-01&rft.volume=14&rft.issue=3&rft.spage=858&rft.epage=867&rft.pages=858-867&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-3125-x&rft_dat=%3Cproquest_cross%3E2474583031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474583031&rft_id=info:pmid/&rfr_iscdi=true