Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering
Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the o...
Gespeichert in:
Veröffentlicht in: | Nano research 2021-03, Vol.14 (3), p.858-867 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 3 |
container_start_page | 858 |
container_title | Nano research |
container_volume | 14 |
creator | Mennucci, Carlo Chowdhury, Debasree Manzato, Giacomo Barelli, Matteo Chittofrati, Roberto Martella, Christian Buatier de Mongeot, Francesco |
description | Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm
2
) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO
2
/Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes. |
doi_str_mv | 10.1007/s12274-020-3125-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2474583031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474583031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8Fz9FkkrbJURa_YMGLew5JO1mzdNuadGHXX29LFU_OZWbgfd9hHkJuOLvjjJX3iQOUkjJgVHDI6eGELLjWirKxTn9nDvKcXKS0ZawALtWCrFc2bpDaiDbzDR6CazBrbdulIYYeM2ywGmJXY8o82mEfQ7vJ-samXddmH0cXQx2-7BDGDdtNaBEnxRU587ZJeP3TL8n66fF9-UJXb8-vy4cVrUSuBwoKHAB6z53UwspC517x0rqCoXZKCVEXAFzXjFVe-DL3IHTNlXTcClRSXJLbObeP3ece02C23T6240kDspS5EkzwUcVnVRW7lCJ608ews_FoODMTPTPTMyM9M9Ezh9EDsyf100MY_5L_N30D4L9zkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474583031</pqid></control><display><type>article</type><title>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mennucci, Carlo ; Chowdhury, Debasree ; Manzato, Giacomo ; Barelli, Matteo ; Chittofrati, Roberto ; Martella, Christian ; Buatier de Mongeot, Francesco</creator><creatorcontrib>Mennucci, Carlo ; Chowdhury, Debasree ; Manzato, Giacomo ; Barelli, Matteo ; Chittofrati, Roberto ; Martella, Christian ; Buatier de Mongeot, Francesco</creatorcontrib><description>Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm
2
) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO
2
/Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-3125-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Arrays ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Dimers ; Electrodes ; Hybridization ; Lattice vibration ; Materials Science ; Morphology ; Nanotechnology ; Near infrared radiation ; Optical properties ; Photons ; Photovoltaic cells ; Photovoltaics ; Plasmonics ; Red shift ; Research Article ; Silicon dioxide ; Transport properties</subject><ispartof>Nano research, 2021-03, Vol.14 (3), p.858-867</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</citedby><cites>FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-3125-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-3125-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mennucci, Carlo</creatorcontrib><creatorcontrib>Chowdhury, Debasree</creatorcontrib><creatorcontrib>Manzato, Giacomo</creatorcontrib><creatorcontrib>Barelli, Matteo</creatorcontrib><creatorcontrib>Chittofrati, Roberto</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Buatier de Mongeot, Francesco</creatorcontrib><title>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm
2
) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO
2
/Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.</description><subject>Arrays</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dimers</subject><subject>Electrodes</subject><subject>Hybridization</subject><subject>Lattice vibration</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Near infrared radiation</subject><subject>Optical properties</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Plasmonics</subject><subject>Red shift</subject><subject>Research Article</subject><subject>Silicon dioxide</subject><subject>Transport properties</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8Fz9FkkrbJURa_YMGLew5JO1mzdNuadGHXX29LFU_OZWbgfd9hHkJuOLvjjJX3iQOUkjJgVHDI6eGELLjWirKxTn9nDvKcXKS0ZawALtWCrFc2bpDaiDbzDR6CazBrbdulIYYeM2ywGmJXY8o82mEfQ7vJ-samXddmH0cXQx2-7BDGDdtNaBEnxRU587ZJeP3TL8n66fF9-UJXb8-vy4cVrUSuBwoKHAB6z53UwspC517x0rqCoXZKCVEXAFzXjFVe-DL3IHTNlXTcClRSXJLbObeP3ece02C23T6240kDspS5EkzwUcVnVRW7lCJ608ews_FoODMTPTPTMyM9M9Ezh9EDsyf100MY_5L_N30D4L9zkQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mennucci, Carlo</creator><creator>Chowdhury, Debasree</creator><creator>Manzato, Giacomo</creator><creator>Barelli, Matteo</creator><creator>Chittofrati, Roberto</creator><creator>Martella, Christian</creator><creator>Buatier de Mongeot, Francesco</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</title><author>Mennucci, Carlo ; Chowdhury, Debasree ; Manzato, Giacomo ; Barelli, Matteo ; Chittofrati, Roberto ; Martella, Christian ; Buatier de Mongeot, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-282b22eff1b493a4695f817ab60e9b8833d62219d00cf3f75f239d184b1a3e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dimers</topic><topic>Electrodes</topic><topic>Hybridization</topic><topic>Lattice vibration</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Near infrared radiation</topic><topic>Optical properties</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Plasmonics</topic><topic>Red shift</topic><topic>Research Article</topic><topic>Silicon dioxide</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mennucci, Carlo</creatorcontrib><creatorcontrib>Chowdhury, Debasree</creatorcontrib><creatorcontrib>Manzato, Giacomo</creatorcontrib><creatorcontrib>Barelli, Matteo</creatorcontrib><creatorcontrib>Chittofrati, Roberto</creatorcontrib><creatorcontrib>Martella, Christian</creatorcontrib><creatorcontrib>Buatier de Mongeot, Francesco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mennucci, Carlo</au><au>Chowdhury, Debasree</au><au>Manzato, Giacomo</au><au>Barelli, Matteo</au><au>Chittofrati, Roberto</au><au>Martella, Christian</au><au>Buatier de Mongeot, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>14</volume><issue>3</issue><spage>858</spage><epage>867</epage><pages>858-867</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Multifunctional flexible Au electrodes based on one-dimensional (1D) arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates. Au nanostripe (NS) arrays achieve sheet resistance in the order of 20 Ohm/square on large areas (∼ cm
2
) and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible (VIS) to near-infrared (NIR) spectral range by tailoring their cross-sectional morphology. Stacking vertically a second nanostripe, separated by a nanometer scale dielectric gap, we form near-field coupled Au/SiO
2
/Au dimers which feature hybridization of their localized plasmon resonances, strong local field-enhancements and a redshift of the resonance towards the NIR range. The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g., in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices. The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances, a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-3125-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2021-03, Vol.14 (3), p.858-867 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2474583031 |
source | SpringerLink Journals - AutoHoldings |
subjects | Arrays Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Dimers Electrodes Hybridization Lattice vibration Materials Science Morphology Nanotechnology Near infrared radiation Optical properties Photons Photovoltaic cells Photovoltaics Plasmonics Red shift Research Article Silicon dioxide Transport properties |
title | Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20flexible%20nanostripe%20electrodes%20featuring%20plasmon%20hybridization%20engineering&rft.jtitle=Nano%20research&rft.au=Mennucci,%20Carlo&rft.date=2021-03-01&rft.volume=14&rft.issue=3&rft.spage=858&rft.epage=867&rft.pages=858-867&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-3125-x&rft_dat=%3Cproquest_cross%3E2474583031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474583031&rft_id=info:pmid/&rfr_iscdi=true |