Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture
In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) app...
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2020-09, Vol.27 (9), p.2614-2627 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2627 |
---|---|
container_issue | 9 |
container_start_page | 2614 |
container_title | Journal of Central South University |
container_volume | 27 |
creator | Wu, Wen-di Wu, Yun-long Li, Jing-hua Ren, Xiao-guang Shi, Dian-xi Tang, Yu-hua |
description | In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively. |
doi_str_mv | 10.1007/s11771-020-4486-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473819109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473819109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhgdRsNQ-gLuA62huk0yWpXiDihvrTkImc6aNzqUmGaFv79QRXLk6B873_we-LLuk5JoSom4ipUpRTBjBQhQSFyfZjDGmcM4YPx13onPMCq3Ps0WMviScMsmllrPs7Wlokseb5SuKQ_gC3zS2c4B8u2-ghS7Z5PsODV0FAe08BBvczjvboOrQ2dY7lGz8QNHtoBoa323RD5DApSHARXZW2ybC4nfOs83d7cvqAa-f7x9XyzV2nMqEoXS11UBKxismqBIKGKHECiXK3OWlGI-KOM7yIheylILUlOTOghaaS17xeXY19e5D_zlATOa9H0I3vjRMKF5QTYkeKTpRLvQxBqjNPvjWhoOhxBxFmkmkGUWao0hTjBk2ZeLIdlsIf83_h74BEgF2sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473819109</pqid></control><display><type>article</type><title>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Wen-di ; Wu, Yun-long ; Li, Jing-hua ; Ren, Xiao-guang ; Shi, Dian-xi ; Tang, Yu-hua</creator><creatorcontrib>Wu, Wen-di ; Wu, Yun-long ; Li, Jing-hua ; Ren, Xiao-guang ; Shi, Dian-xi ; Tang, Yu-hua</creatorcontrib><description>In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-020-4486-8</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Algorithms ; Engineering ; Fields (mathematics) ; Metallic Materials ; Monitoring ; Surveillance ; Synchronism ; Task scheduling ; Unmanned aerial vehicles</subject><ispartof>Journal of Central South University, 2020-09, Vol.27 (9), p.2614-2627</ispartof><rights>Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</citedby><cites>FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</cites><orcidid>0000-0002-8048-6762 ; 0000-0002-6911-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-020-4486-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-020-4486-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Wen-di</creatorcontrib><creatorcontrib>Wu, Yun-long</creatorcontrib><creatorcontrib>Li, Jing-hua</creatorcontrib><creatorcontrib>Ren, Xiao-guang</creatorcontrib><creatorcontrib>Shi, Dian-xi</creatorcontrib><creatorcontrib>Tang, Yu-hua</creatorcontrib><title>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.</description><subject>Algorithms</subject><subject>Engineering</subject><subject>Fields (mathematics)</subject><subject>Metallic Materials</subject><subject>Monitoring</subject><subject>Surveillance</subject><subject>Synchronism</subject><subject>Task scheduling</subject><subject>Unmanned aerial vehicles</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhgdRsNQ-gLuA62huk0yWpXiDihvrTkImc6aNzqUmGaFv79QRXLk6B873_we-LLuk5JoSom4ipUpRTBjBQhQSFyfZjDGmcM4YPx13onPMCq3Ps0WMviScMsmllrPs7Wlokseb5SuKQ_gC3zS2c4B8u2-ghS7Z5PsODV0FAe08BBvczjvboOrQ2dY7lGz8QNHtoBoa323RD5DApSHARXZW2ybC4nfOs83d7cvqAa-f7x9XyzV2nMqEoXS11UBKxismqBIKGKHECiXK3OWlGI-KOM7yIheylILUlOTOghaaS17xeXY19e5D_zlATOa9H0I3vjRMKF5QTYkeKTpRLvQxBqjNPvjWhoOhxBxFmkmkGUWao0hTjBk2ZeLIdlsIf83_h74BEgF2sA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wu, Wen-di</creator><creator>Wu, Yun-long</creator><creator>Li, Jing-hua</creator><creator>Ren, Xiao-guang</creator><creator>Shi, Dian-xi</creator><creator>Tang, Yu-hua</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8048-6762</orcidid><orcidid>https://orcid.org/0000-0002-6911-954X</orcidid></search><sort><creationdate>20200901</creationdate><title>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</title><author>Wu, Wen-di ; Wu, Yun-long ; Li, Jing-hua ; Ren, Xiao-guang ; Shi, Dian-xi ; Tang, Yu-hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Engineering</topic><topic>Fields (mathematics)</topic><topic>Metallic Materials</topic><topic>Monitoring</topic><topic>Surveillance</topic><topic>Synchronism</topic><topic>Task scheduling</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wen-di</creatorcontrib><creatorcontrib>Wu, Yun-long</creatorcontrib><creatorcontrib>Li, Jing-hua</creatorcontrib><creatorcontrib>Ren, Xiao-guang</creatorcontrib><creatorcontrib>Shi, Dian-xi</creatorcontrib><creatorcontrib>Tang, Yu-hua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wen-di</au><au>Wu, Yun-long</au><au>Li, Jing-hua</au><au>Ren, Xiao-guang</au><au>Shi, Dian-xi</au><au>Tang, Yu-hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>27</volume><issue>9</issue><spage>2614</spage><epage>2627</epage><pages>2614-2627</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-020-4486-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8048-6762</orcidid><orcidid>https://orcid.org/0000-0002-6911-954X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2899 |
ispartof | Journal of Central South University, 2020-09, Vol.27 (9), p.2614-2627 |
issn | 2095-2899 2227-5223 |
language | eng |
recordid | cdi_proquest_journals_2473819109 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Algorithms Engineering Fields (mathematics) Metallic Materials Monitoring Surveillance Synchronism Task scheduling Unmanned aerial vehicles |
title | Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-UAV%20surveillance%20implementation%20under%20hierarchical%20dynamic%20task%20scheduling%20architecture&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Wu,%20Wen-di&rft.date=2020-09-01&rft.volume=27&rft.issue=9&rft.spage=2614&rft.epage=2627&rft.pages=2614-2627&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-020-4486-8&rft_dat=%3Cproquest_cross%3E2473819109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473819109&rft_id=info:pmid/&rfr_iscdi=true |