Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture

In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2020-09, Vol.27 (9), p.2614-2627
Hauptverfasser: Wu, Wen-di, Wu, Yun-long, Li, Jing-hua, Ren, Xiao-guang, Shi, Dian-xi, Tang, Yu-hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2627
container_issue 9
container_start_page 2614
container_title Journal of Central South University
container_volume 27
creator Wu, Wen-di
Wu, Yun-long
Li, Jing-hua
Ren, Xiao-guang
Shi, Dian-xi
Tang, Yu-hua
description In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.
doi_str_mv 10.1007/s11771-020-4486-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473819109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473819109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhgdRsNQ-gLuA62huk0yWpXiDihvrTkImc6aNzqUmGaFv79QRXLk6B873_we-LLuk5JoSom4ipUpRTBjBQhQSFyfZjDGmcM4YPx13onPMCq3Ps0WMviScMsmllrPs7Wlokseb5SuKQ_gC3zS2c4B8u2-ghS7Z5PsODV0FAe08BBvczjvboOrQ2dY7lGz8QNHtoBoa323RD5DApSHARXZW2ybC4nfOs83d7cvqAa-f7x9XyzV2nMqEoXS11UBKxismqBIKGKHECiXK3OWlGI-KOM7yIheylILUlOTOghaaS17xeXY19e5D_zlATOa9H0I3vjRMKF5QTYkeKTpRLvQxBqjNPvjWhoOhxBxFmkmkGUWao0hTjBk2ZeLIdlsIf83_h74BEgF2sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473819109</pqid></control><display><type>article</type><title>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Wu, Wen-di ; Wu, Yun-long ; Li, Jing-hua ; Ren, Xiao-guang ; Shi, Dian-xi ; Tang, Yu-hua</creator><creatorcontrib>Wu, Wen-di ; Wu, Yun-long ; Li, Jing-hua ; Ren, Xiao-guang ; Shi, Dian-xi ; Tang, Yu-hua</creatorcontrib><description>In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-020-4486-8</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Algorithms ; Engineering ; Fields (mathematics) ; Metallic Materials ; Monitoring ; Surveillance ; Synchronism ; Task scheduling ; Unmanned aerial vehicles</subject><ispartof>Journal of Central South University, 2020-09, Vol.27 (9), p.2614-2627</ispartof><rights>Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</citedby><cites>FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</cites><orcidid>0000-0002-8048-6762 ; 0000-0002-6911-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-020-4486-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-020-4486-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Wen-di</creatorcontrib><creatorcontrib>Wu, Yun-long</creatorcontrib><creatorcontrib>Li, Jing-hua</creatorcontrib><creatorcontrib>Ren, Xiao-guang</creatorcontrib><creatorcontrib>Shi, Dian-xi</creatorcontrib><creatorcontrib>Tang, Yu-hua</creatorcontrib><title>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.</description><subject>Algorithms</subject><subject>Engineering</subject><subject>Fields (mathematics)</subject><subject>Metallic Materials</subject><subject>Monitoring</subject><subject>Surveillance</subject><subject>Synchronism</subject><subject>Task scheduling</subject><subject>Unmanned aerial vehicles</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhgdRsNQ-gLuA62huk0yWpXiDihvrTkImc6aNzqUmGaFv79QRXLk6B873_we-LLuk5JoSom4ipUpRTBjBQhQSFyfZjDGmcM4YPx13onPMCq3Ps0WMviScMsmllrPs7Wlokseb5SuKQ_gC3zS2c4B8u2-ghS7Z5PsODV0FAe08BBvczjvboOrQ2dY7lGz8QNHtoBoa323RD5DApSHARXZW2ybC4nfOs83d7cvqAa-f7x9XyzV2nMqEoXS11UBKxismqBIKGKHECiXK3OWlGI-KOM7yIheylILUlOTOghaaS17xeXY19e5D_zlATOa9H0I3vjRMKF5QTYkeKTpRLvQxBqjNPvjWhoOhxBxFmkmkGUWao0hTjBk2ZeLIdlsIf83_h74BEgF2sA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wu, Wen-di</creator><creator>Wu, Yun-long</creator><creator>Li, Jing-hua</creator><creator>Ren, Xiao-guang</creator><creator>Shi, Dian-xi</creator><creator>Tang, Yu-hua</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8048-6762</orcidid><orcidid>https://orcid.org/0000-0002-6911-954X</orcidid></search><sort><creationdate>20200901</creationdate><title>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</title><author>Wu, Wen-di ; Wu, Yun-long ; Li, Jing-hua ; Ren, Xiao-guang ; Shi, Dian-xi ; Tang, Yu-hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ebcfa9e0b23d241747e2010a474b5c5b4a9e70c3258546b640f105cae949363d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Engineering</topic><topic>Fields (mathematics)</topic><topic>Metallic Materials</topic><topic>Monitoring</topic><topic>Surveillance</topic><topic>Synchronism</topic><topic>Task scheduling</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wen-di</creatorcontrib><creatorcontrib>Wu, Yun-long</creatorcontrib><creatorcontrib>Li, Jing-hua</creatorcontrib><creatorcontrib>Ren, Xiao-guang</creatorcontrib><creatorcontrib>Shi, Dian-xi</creatorcontrib><creatorcontrib>Tang, Yu-hua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wen-di</au><au>Wu, Yun-long</au><au>Li, Jing-hua</au><au>Ren, Xiao-guang</au><au>Shi, Dian-xi</au><au>Tang, Yu-hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>27</volume><issue>9</issue><spage>2614</spage><epage>2627</epage><pages>2614-2627</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-020-4486-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8048-6762</orcidid><orcidid>https://orcid.org/0000-0002-6911-954X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-2899
ispartof Journal of Central South University, 2020-09, Vol.27 (9), p.2614-2627
issn 2095-2899
2227-5223
language eng
recordid cdi_proquest_journals_2473819109
source SpringerNature Journals; Alma/SFX Local Collection
subjects Algorithms
Engineering
Fields (mathematics)
Metallic Materials
Monitoring
Surveillance
Synchronism
Task scheduling
Unmanned aerial vehicles
title Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-UAV%20surveillance%20implementation%20under%20hierarchical%20dynamic%20task%20scheduling%20architecture&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Wu,%20Wen-di&rft.date=2020-09-01&rft.volume=27&rft.issue=9&rft.spage=2614&rft.epage=2627&rft.pages=2614-2627&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-020-4486-8&rft_dat=%3Cproquest_cross%3E2473819109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473819109&rft_id=info:pmid/&rfr_iscdi=true