Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets

In this study, a neural-fuzzy (NF) system is combined with group method of data handling (GMDH) in order to estimate the axial bearing capacity of driven piles. To reach optimum design of this conjunction (NF-GMDH) network, the metaheuristic techniques including particle swarm optimization (PSO) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science and technology. Transactions of civil engineering 2020-10, Vol.44 (Suppl 1), p.545-559
Hauptverfasser: Harandizadeh, Hooman, Toufigh, Vahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue Suppl 1
container_start_page 545
container_title Iranian journal of science and technology. Transactions of civil engineering
container_volume 44
creator Harandizadeh, Hooman
Toufigh, Vahid
description In this study, a neural-fuzzy (NF) system is combined with group method of data handling (GMDH) in order to estimate the axial bearing capacity of driven piles. To reach optimum design of this conjunction (NF-GMDH) network, the metaheuristic techniques including particle swarm optimization (PSO) and gravitational search algorithm (GSA) were utilized. The datasets used for estimating pile bearing capacity were collected from the literature review. The parameters influencing the modeling and pile capacity analysis were taken into account as Flap number, surrounding soil properties, the pile geometric characteristics, and internal friction angles of the pile–soil interface. The efficiency of hybrid NF-GMDH networks in train and test phases was examined. Applying the PSO algorithm to the hybrid NF-GMDH model structure improved the model performance and achieved a higher level of accuracy in predicting the ultimate pile bearing capacity (RMSE = 1375 and SI = 0.255) compared to NF-GMDH model developed by GSA (RMSE = 1740.7 and SI = 0.357). In addition, based on achieved results, the developed NF-GMDH networks showed relatively better performances in comparison with gene programming and linear regression model methods considered in this study.
doi_str_mv 10.1007/s40996-019-00332-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473816618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473816618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-57abc3801cb31a66533866a7346920105bb749a4e0f9cb7bbde8254ee145abad3</originalsourceid><addsrcrecordid>eNp9kd1OxCAQhRujiUb3Bbwi8boKhdL2cv_8SYya6F6TKTtdMUgrsKs-km8p7pp45xVkmPOdGU6WnTJ6ziitLoKgTSNzypqcUs6LvNzLjgouRc5qwffTvSjqXDJJD7NRCC-UUkYrTmV9lH2Nh8EaDdH0jvQdmeEGbT_gktzhOxn7aDqjDVhy4yJaa1boNJIk8j3oZwzEODI1G2PJ3K2MQ_TGrUjXe7Kw0bxCRPJgLJIJwvZlCgNoEz_Jg8el0VvbhHjsE2ECIfmmwvxjSJxXdDEZzyCmegwn2UEHNuDo9zzOFpfzp-l1fnt_dTMd3-aasybmZQWt5jVluuUMpCw5r6WEigvZFGnvsm0r0YBA2jW6rdp2iXVRCkQmSmhhyY-zsx03rfi2xhDVS7_2LlmqQlS8ZlKyOnUVuy7t-xA8dmpIE4P_VIyqn1TULhWVUlHbVFSZRHwnCsPPZ6D_Q_-j-gb9NJHy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473816618</pqid></control><display><type>article</type><title>Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Harandizadeh, Hooman ; Toufigh, Vahid</creator><creatorcontrib>Harandizadeh, Hooman ; Toufigh, Vahid</creatorcontrib><description>In this study, a neural-fuzzy (NF) system is combined with group method of data handling (GMDH) in order to estimate the axial bearing capacity of driven piles. To reach optimum design of this conjunction (NF-GMDH) network, the metaheuristic techniques including particle swarm optimization (PSO) and gravitational search algorithm (GSA) were utilized. The datasets used for estimating pile bearing capacity were collected from the literature review. The parameters influencing the modeling and pile capacity analysis were taken into account as Flap number, surrounding soil properties, the pile geometric characteristics, and internal friction angles of the pile–soil interface. The efficiency of hybrid NF-GMDH networks in train and test phases was examined. Applying the PSO algorithm to the hybrid NF-GMDH model structure improved the model performance and achieved a higher level of accuracy in predicting the ultimate pile bearing capacity (RMSE = 1375 and SI = 0.255) compared to NF-GMDH model developed by GSA (RMSE = 1740.7 and SI = 0.357). In addition, based on achieved results, the developed NF-GMDH networks showed relatively better performances in comparison with gene programming and linear regression model methods considered in this study.</description><identifier>ISSN: 2228-6160</identifier><identifier>EISSN: 2364-1843</identifier><identifier>DOI: 10.1007/s40996-019-00332-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Civil Engineering ; Datasets ; Driven piles ; Engineering ; Fuzzy logic ; Fuzzy sets ; Gravity ; Group method of data handling ; Heuristic methods ; Internal friction ; Literature reviews ; Particle swarm optimization ; Pile bearing capacities ; Regression analysis ; Regression models ; Research Paper ; Search algorithms ; Soil bearing capacity ; Soil properties ; Soils ; Swarm intelligence</subject><ispartof>Iranian journal of science and technology. Transactions of civil engineering, 2020-10, Vol.44 (Suppl 1), p.545-559</ispartof><rights>Shiraz University 2020</rights><rights>Shiraz University 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-57abc3801cb31a66533866a7346920105bb749a4e0f9cb7bbde8254ee145abad3</citedby><cites>FETCH-LOGICAL-c319t-57abc3801cb31a66533866a7346920105bb749a4e0f9cb7bbde8254ee145abad3</cites><orcidid>0000-0002-9337-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40996-019-00332-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40996-019-00332-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Harandizadeh, Hooman</creatorcontrib><creatorcontrib>Toufigh, Vahid</creatorcontrib><title>Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets</title><title>Iranian journal of science and technology. Transactions of civil engineering</title><addtitle>Iran J Sci Technol Trans Civ Eng</addtitle><description>In this study, a neural-fuzzy (NF) system is combined with group method of data handling (GMDH) in order to estimate the axial bearing capacity of driven piles. To reach optimum design of this conjunction (NF-GMDH) network, the metaheuristic techniques including particle swarm optimization (PSO) and gravitational search algorithm (GSA) were utilized. The datasets used for estimating pile bearing capacity were collected from the literature review. The parameters influencing the modeling and pile capacity analysis were taken into account as Flap number, surrounding soil properties, the pile geometric characteristics, and internal friction angles of the pile–soil interface. The efficiency of hybrid NF-GMDH networks in train and test phases was examined. Applying the PSO algorithm to the hybrid NF-GMDH model structure improved the model performance and achieved a higher level of accuracy in predicting the ultimate pile bearing capacity (RMSE = 1375 and SI = 0.255) compared to NF-GMDH model developed by GSA (RMSE = 1740.7 and SI = 0.357). In addition, based on achieved results, the developed NF-GMDH networks showed relatively better performances in comparison with gene programming and linear regression model methods considered in this study.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Datasets</subject><subject>Driven piles</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Gravity</subject><subject>Group method of data handling</subject><subject>Heuristic methods</subject><subject>Internal friction</subject><subject>Literature reviews</subject><subject>Particle swarm optimization</subject><subject>Pile bearing capacities</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Paper</subject><subject>Search algorithms</subject><subject>Soil bearing capacity</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Swarm intelligence</subject><issn>2228-6160</issn><issn>2364-1843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kd1OxCAQhRujiUb3Bbwi8boKhdL2cv_8SYya6F6TKTtdMUgrsKs-km8p7pp45xVkmPOdGU6WnTJ6ziitLoKgTSNzypqcUs6LvNzLjgouRc5qwffTvSjqXDJJD7NRCC-UUkYrTmV9lH2Nh8EaDdH0jvQdmeEGbT_gktzhOxn7aDqjDVhy4yJaa1boNJIk8j3oZwzEODI1G2PJ3K2MQ_TGrUjXe7Kw0bxCRPJgLJIJwvZlCgNoEz_Jg8el0VvbhHjsE2ECIfmmwvxjSJxXdDEZzyCmegwn2UEHNuDo9zzOFpfzp-l1fnt_dTMd3-aasybmZQWt5jVluuUMpCw5r6WEigvZFGnvsm0r0YBA2jW6rdp2iXVRCkQmSmhhyY-zsx03rfi2xhDVS7_2LlmqQlS8ZlKyOnUVuy7t-xA8dmpIE4P_VIyqn1TULhWVUlHbVFSZRHwnCsPPZ6D_Q_-j-gb9NJHy</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Harandizadeh, Hooman</creator><creator>Toufigh, Vahid</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9337-0267</orcidid></search><sort><creationdate>20201001</creationdate><title>Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets</title><author>Harandizadeh, Hooman ; Toufigh, Vahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-57abc3801cb31a66533866a7346920105bb749a4e0f9cb7bbde8254ee145abad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Datasets</topic><topic>Driven piles</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Gravity</topic><topic>Group method of data handling</topic><topic>Heuristic methods</topic><topic>Internal friction</topic><topic>Literature reviews</topic><topic>Particle swarm optimization</topic><topic>Pile bearing capacities</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Paper</topic><topic>Search algorithms</topic><topic>Soil bearing capacity</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harandizadeh, Hooman</creatorcontrib><creatorcontrib>Toufigh, Vahid</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Iranian journal of science and technology. Transactions of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harandizadeh, Hooman</au><au>Toufigh, Vahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets</atitle><jtitle>Iranian journal of science and technology. Transactions of civil engineering</jtitle><stitle>Iran J Sci Technol Trans Civ Eng</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>44</volume><issue>Suppl 1</issue><spage>545</spage><epage>559</epage><pages>545-559</pages><issn>2228-6160</issn><eissn>2364-1843</eissn><abstract>In this study, a neural-fuzzy (NF) system is combined with group method of data handling (GMDH) in order to estimate the axial bearing capacity of driven piles. To reach optimum design of this conjunction (NF-GMDH) network, the metaheuristic techniques including particle swarm optimization (PSO) and gravitational search algorithm (GSA) were utilized. The datasets used for estimating pile bearing capacity were collected from the literature review. The parameters influencing the modeling and pile capacity analysis were taken into account as Flap number, surrounding soil properties, the pile geometric characteristics, and internal friction angles of the pile–soil interface. The efficiency of hybrid NF-GMDH networks in train and test phases was examined. Applying the PSO algorithm to the hybrid NF-GMDH model structure improved the model performance and achieved a higher level of accuracy in predicting the ultimate pile bearing capacity (RMSE = 1375 and SI = 0.255) compared to NF-GMDH model developed by GSA (RMSE = 1740.7 and SI = 0.357). In addition, based on achieved results, the developed NF-GMDH networks showed relatively better performances in comparison with gene programming and linear regression model methods considered in this study.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40996-019-00332-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9337-0267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2228-6160
ispartof Iranian journal of science and technology. Transactions of civil engineering, 2020-10, Vol.44 (Suppl 1), p.545-559
issn 2228-6160
2364-1843
language eng
recordid cdi_proquest_journals_2473816618
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial intelligence
Artificial neural networks
Civil Engineering
Datasets
Driven piles
Engineering
Fuzzy logic
Fuzzy sets
Gravity
Group method of data handling
Heuristic methods
Internal friction
Literature reviews
Particle swarm optimization
Pile bearing capacities
Regression analysis
Regression models
Research Paper
Search algorithms
Soil bearing capacity
Soil properties
Soils
Swarm intelligence
title Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Developed%20New%20Artificial%20Intelligence%20Approaches%20in%20Civil%20Engineering%20for%20Ultimate%20Pile%20Bearing%20Capacity%20Prediction%20in%20Soil%20Based%20on%20Experimental%20Datasets&rft.jtitle=Iranian%20journal%20of%20science%20and%20technology.%20Transactions%20of%20civil%20engineering&rft.au=Harandizadeh,%20Hooman&rft.date=2020-10-01&rft.volume=44&rft.issue=Suppl%201&rft.spage=545&rft.epage=559&rft.pages=545-559&rft.issn=2228-6160&rft.eissn=2364-1843&rft_id=info:doi/10.1007/s40996-019-00332-5&rft_dat=%3Cproquest_cross%3E2473816618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473816618&rft_id=info:pmid/&rfr_iscdi=true