Molecular Simulation on Competitive Adsorptions of CO2, CH4, and N2 in Deep Coal Seams

In this paper we have simulated the competitive adsorption of CO 2 , CH 4, and N 2 gases in deep coal seams by building a graphite supercell structure and discussed the impact of pressure, pore size, and multicomponent composition on CH 4 desorption. The results show that the adsorption capacity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry and technology of fuels and oils 2020, Vol.56 (4), p.619-626
Hauptverfasser: Yang, Zhaozhong, Yang, Su, Han, Jinxuan, Li, Xiaogang, Lu, Yanjun, Ji, Guofa, Fu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 4
container_start_page 619
container_title Chemistry and technology of fuels and oils
container_volume 56
creator Yang, Zhaozhong
Yang, Su
Han, Jinxuan
Li, Xiaogang
Lu, Yanjun
Ji, Guofa
Fu, Qiang
description In this paper we have simulated the competitive adsorption of CO 2 , CH 4, and N 2 gases in deep coal seams by building a graphite supercell structure and discussed the impact of pressure, pore size, and multicomponent composition on CH 4 desorption. The results show that the adsorption capacity of a single component gas changes is in the order of CO 2 > CH 4 > N 2 . For the CH 4 /CO 2 competitive adsorption, absorbed CO 2 can reach saturation at low pressure conditions. CO 2 has an adsorptive advantage compared with CH 4 . It is shown that CO 2 can promote the CH 4 desorption by the displacement mechanism. For CH 4 /N 2 competitive adsorption, the adsorption capacity of N 2 is weaker than that of CH 4 , demonstrating that improvement in coalbed methane (CBM) production by N 2 injection is achieved by reducing the partial pressure and creating flow channels. The presence of H 2 O has a greater impact on the gas with a stronger adsorption capacity in the binary component system. For the CH/CO 2 /N 2 competitive adsorption, the CO 2 adsorption is dominant in 1 nm slit pores, while CH 4 adsorption is dominant in 2 nm slit pores. This indicates that when the pore diameter increases, the CO 2 /N 2 injection does not promote CH 4 desorption. H 2 O also has a significant impact on the competitive adsorption in the ternary component system. The strong interaction between H 2 O and CO 2 weakens the CO 2 adsorption capacity.
doi_str_mv 10.1007/s10553-020-01175-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473811081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473811081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271x-8937326ed71f6d6650269a935b4fa9d8ee17c61223d28bfe1e3622c70d9bfcc83</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeAr4vem6xN-zjqnwnTPUx9DVmbSkfb1KST-u3NrOCbcOFwueecCz9CLhGuEUDeeIQoEgw4MECUERuOyAQjKVgiEI7JBABSJiDlp-TM-91hlVxMyNuTrU2-r7Wjm6oJ2le2pWEy23Smr_rq09BF4a3rDhdPbUmzNZ_RbDmfUd0W9JnTqqW3xnQho2u6Mbrx5-Sk1LU3F786Ja_3dy_Zkq3WD4_ZYsVyLnFgSSqk4LEpJJZxEccR8DjVqYi281KnRWIMyjxGzkXBk21p0IiY81xCkW7LPE_ElFyNvZ2zH3vje7Wze9eGl4rPpUgQIcHg4qMrd9Z7Z0rVuarR7kshqAM_NfJTgZ_64aeGEBJjyAdz-27cX_U_qW-tqXEL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473811081</pqid></control><display><type>article</type><title>Molecular Simulation on Competitive Adsorptions of CO2, CH4, and N2 in Deep Coal Seams</title><source>SpringerNature Journals</source><creator>Yang, Zhaozhong ; Yang, Su ; Han, Jinxuan ; Li, Xiaogang ; Lu, Yanjun ; Ji, Guofa ; Fu, Qiang</creator><creatorcontrib>Yang, Zhaozhong ; Yang, Su ; Han, Jinxuan ; Li, Xiaogang ; Lu, Yanjun ; Ji, Guofa ; Fu, Qiang</creatorcontrib><description>In this paper we have simulated the competitive adsorption of CO 2 , CH 4, and N 2 gases in deep coal seams by building a graphite supercell structure and discussed the impact of pressure, pore size, and multicomponent composition on CH 4 desorption. The results show that the adsorption capacity of a single component gas changes is in the order of CO 2 &gt; CH 4 &gt; N 2 . For the CH 4 /CO 2 competitive adsorption, absorbed CO 2 can reach saturation at low pressure conditions. CO 2 has an adsorptive advantage compared with CH 4 . It is shown that CO 2 can promote the CH 4 desorption by the displacement mechanism. For CH 4 /N 2 competitive adsorption, the adsorption capacity of N 2 is weaker than that of CH 4 , demonstrating that improvement in coalbed methane (CBM) production by N 2 injection is achieved by reducing the partial pressure and creating flow channels. The presence of H 2 O has a greater impact on the gas with a stronger adsorption capacity in the binary component system. For the CH/CO 2 /N 2 competitive adsorption, the CO 2 adsorption is dominant in 1 nm slit pores, while CH 4 adsorption is dominant in 2 nm slit pores. This indicates that when the pore diameter increases, the CO 2 /N 2 injection does not promote CH 4 desorption. H 2 O also has a significant impact on the competitive adsorption in the ternary component system. The strong interaction between H 2 O and CO 2 weakens the CO 2 adsorption capacity.</description><identifier>ISSN: 0009-3092</identifier><identifier>EISSN: 1573-8310</identifier><identifier>DOI: 10.1007/s10553-020-01175-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Adsorptivity ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Coalbed methane ; Competition ; Desorption ; Geotechnical Engineering &amp; Applied Earth Sciences ; Industrial Chemistry/Chemical Engineering ; Low pressure ; Methane ; Mineral Resources ; Partial pressure ; Pore size ; Porosity ; Strong interactions (field theory)</subject><ispartof>Chemistry and technology of fuels and oils, 2020, Vol.56 (4), p.619-626</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271x-8937326ed71f6d6650269a935b4fa9d8ee17c61223d28bfe1e3622c70d9bfcc83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10553-020-01175-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10553-020-01175-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Zhaozhong</creatorcontrib><creatorcontrib>Yang, Su</creatorcontrib><creatorcontrib>Han, Jinxuan</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Lu, Yanjun</creatorcontrib><creatorcontrib>Ji, Guofa</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><title>Molecular Simulation on Competitive Adsorptions of CO2, CH4, and N2 in Deep Coal Seams</title><title>Chemistry and technology of fuels and oils</title><addtitle>Chem Technol Fuels Oils</addtitle><description>In this paper we have simulated the competitive adsorption of CO 2 , CH 4, and N 2 gases in deep coal seams by building a graphite supercell structure and discussed the impact of pressure, pore size, and multicomponent composition on CH 4 desorption. The results show that the adsorption capacity of a single component gas changes is in the order of CO 2 &gt; CH 4 &gt; N 2 . For the CH 4 /CO 2 competitive adsorption, absorbed CO 2 can reach saturation at low pressure conditions. CO 2 has an adsorptive advantage compared with CH 4 . It is shown that CO 2 can promote the CH 4 desorption by the displacement mechanism. For CH 4 /N 2 competitive adsorption, the adsorption capacity of N 2 is weaker than that of CH 4 , demonstrating that improvement in coalbed methane (CBM) production by N 2 injection is achieved by reducing the partial pressure and creating flow channels. The presence of H 2 O has a greater impact on the gas with a stronger adsorption capacity in the binary component system. For the CH/CO 2 /N 2 competitive adsorption, the CO 2 adsorption is dominant in 1 nm slit pores, while CH 4 adsorption is dominant in 2 nm slit pores. This indicates that when the pore diameter increases, the CO 2 /N 2 injection does not promote CH 4 desorption. H 2 O also has a significant impact on the competitive adsorption in the ternary component system. The strong interaction between H 2 O and CO 2 weakens the CO 2 adsorption capacity.</description><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coalbed methane</subject><subject>Competition</subject><subject>Desorption</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Low pressure</subject><subject>Methane</subject><subject>Mineral Resources</subject><subject>Partial pressure</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Strong interactions (field theory)</subject><issn>0009-3092</issn><issn>1573-8310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKeAr4vem6xN-zjqnwnTPUx9DVmbSkfb1KST-u3NrOCbcOFwueecCz9CLhGuEUDeeIQoEgw4MECUERuOyAQjKVgiEI7JBABSJiDlp-TM-91hlVxMyNuTrU2-r7Wjm6oJ2le2pWEy23Smr_rq09BF4a3rDhdPbUmzNZ_RbDmfUd0W9JnTqqW3xnQho2u6Mbrx5-Sk1LU3F786Ja_3dy_Zkq3WD4_ZYsVyLnFgSSqk4LEpJJZxEccR8DjVqYi281KnRWIMyjxGzkXBk21p0IiY81xCkW7LPE_ElFyNvZ2zH3vje7Wze9eGl4rPpUgQIcHg4qMrd9Z7Z0rVuarR7kshqAM_NfJTgZ_64aeGEBJjyAdz-27cX_U_qW-tqXEL</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Zhaozhong</creator><creator>Yang, Su</creator><creator>Han, Jinxuan</creator><creator>Li, Xiaogang</creator><creator>Lu, Yanjun</creator><creator>Ji, Guofa</creator><creator>Fu, Qiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Molecular Simulation on Competitive Adsorptions of CO2, CH4, and N2 in Deep Coal Seams</title><author>Yang, Zhaozhong ; Yang, Su ; Han, Jinxuan ; Li, Xiaogang ; Lu, Yanjun ; Ji, Guofa ; Fu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271x-8937326ed71f6d6650269a935b4fa9d8ee17c61223d28bfe1e3622c70d9bfcc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coalbed methane</topic><topic>Competition</topic><topic>Desorption</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Low pressure</topic><topic>Methane</topic><topic>Mineral Resources</topic><topic>Partial pressure</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Strong interactions (field theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhaozhong</creatorcontrib><creatorcontrib>Yang, Su</creatorcontrib><creatorcontrib>Han, Jinxuan</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Lu, Yanjun</creatorcontrib><creatorcontrib>Ji, Guofa</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry and technology of fuels and oils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhaozhong</au><au>Yang, Su</au><au>Han, Jinxuan</au><au>Li, Xiaogang</au><au>Lu, Yanjun</au><au>Ji, Guofa</au><au>Fu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Simulation on Competitive Adsorptions of CO2, CH4, and N2 in Deep Coal Seams</atitle><jtitle>Chemistry and technology of fuels and oils</jtitle><stitle>Chem Technol Fuels Oils</stitle><date>2020</date><risdate>2020</risdate><volume>56</volume><issue>4</issue><spage>619</spage><epage>626</epage><pages>619-626</pages><issn>0009-3092</issn><eissn>1573-8310</eissn><abstract>In this paper we have simulated the competitive adsorption of CO 2 , CH 4, and N 2 gases in deep coal seams by building a graphite supercell structure and discussed the impact of pressure, pore size, and multicomponent composition on CH 4 desorption. The results show that the adsorption capacity of a single component gas changes is in the order of CO 2 &gt; CH 4 &gt; N 2 . For the CH 4 /CO 2 competitive adsorption, absorbed CO 2 can reach saturation at low pressure conditions. CO 2 has an adsorptive advantage compared with CH 4 . It is shown that CO 2 can promote the CH 4 desorption by the displacement mechanism. For CH 4 /N 2 competitive adsorption, the adsorption capacity of N 2 is weaker than that of CH 4 , demonstrating that improvement in coalbed methane (CBM) production by N 2 injection is achieved by reducing the partial pressure and creating flow channels. The presence of H 2 O has a greater impact on the gas with a stronger adsorption capacity in the binary component system. For the CH/CO 2 /N 2 competitive adsorption, the CO 2 adsorption is dominant in 1 nm slit pores, while CH 4 adsorption is dominant in 2 nm slit pores. This indicates that when the pore diameter increases, the CO 2 /N 2 injection does not promote CH 4 desorption. H 2 O also has a significant impact on the competitive adsorption in the ternary component system. The strong interaction between H 2 O and CO 2 weakens the CO 2 adsorption capacity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10553-020-01175-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-3092
ispartof Chemistry and technology of fuels and oils, 2020, Vol.56 (4), p.619-626
issn 0009-3092
1573-8310
language eng
recordid cdi_proquest_journals_2473811081
source SpringerNature Journals
subjects Adsorption
Adsorptivity
Carbon dioxide
Chemistry
Chemistry and Materials Science
Coalbed methane
Competition
Desorption
Geotechnical Engineering & Applied Earth Sciences
Industrial Chemistry/Chemical Engineering
Low pressure
Methane
Mineral Resources
Partial pressure
Pore size
Porosity
Strong interactions (field theory)
title Molecular Simulation on Competitive Adsorptions of CO2, CH4, and N2 in Deep Coal Seams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Simulation%20on%20Competitive%20Adsorptions%20of%20CO2,%20CH4,%20and%20N2%20in%20Deep%20Coal%20Seams&rft.jtitle=Chemistry%20and%20technology%20of%20fuels%20and%20oils&rft.au=Yang,%20Zhaozhong&rft.date=2020&rft.volume=56&rft.issue=4&rft.spage=619&rft.epage=626&rft.pages=619-626&rft.issn=0009-3092&rft.eissn=1573-8310&rft_id=info:doi/10.1007/s10553-020-01175-x&rft_dat=%3Cproquest_cross%3E2473811081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473811081&rft_id=info:pmid/&rfr_iscdi=true