Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine

In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied to extract reversion point in the self-mixing interference signal, thus the pulse w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optoelectronics letters 2020-11, Vol.16 (6), p.467-470
Hauptverfasser: Wang, Xiu-lin, Lü, Li-ping, Hu, Lu, Huang, Wen-cai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 6
container_start_page 467
container_title Optoelectronics letters
container_volume 16
creator Wang, Xiu-lin
Lü, Li-ping
Hu, Lu
Huang, Wen-cai
description In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied to extract reversion point in the self-mixing interference signal, thus the pulse wave profile is successfully reconstructed. Considering the blood pressure values are intrinsically related to characteristic parameters of the pulse wave, 80 samples from the MIMIC-II database are used to train the extreme learning machine blood pressure model. In the experiment, 15 measured samples of pulse wave signal are used as the prediction sets. The results show that the errors of systolic and diastolic blood pressure are both within 5 mmHg compared with that by the Coriolis method.
doi_str_mv 10.1007/s11801-020-0050-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473809982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473809982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a123dd42306131e2291ab9280a28ffb11db6338a648b3cee174ea05ece999bb53</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoOIzzA9wFXEfvTfrKUgZfIAii65C0tzMd2nRMWuz8e1squPJuzll851w4UXSNcIsA2V1AzAE5COAACfDxLFqhUpIngPJ88mkmOSpILqNNCAeYToosj9Uq8u9kGt7XLbH90BrHbNN1JTt6CmHwxFoys7bkemZNoJJ1jjWT8SxQU_G2Hmu3Y7XryVfku5Z6f2Lfdb9nNPZzkDVkvJuh1hT72tFVdFGZJtDmV9fR5-PDx_aZv749vWzvX3khMe25QSHLMhYSUpRIQig0VokcjMiryiKWNpUyN2mcW1kQYRaTgYQKUkpZm8h1dLP0Hn33NVDo9aEbvJteahFnMgelcjFRuFCF70LwVOmjr1vjTxpBz-vqZV09ravndfU4ZcSSCRPrduT_mv8P_QDaBX8O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473809982</pqid></control><display><type>article</type><title>Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine</title><source>SpringerNature Complete Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Xiu-lin ; Lü, Li-ping ; Hu, Lu ; Huang, Wen-cai</creator><creatorcontrib>Wang, Xiu-lin ; Lü, Li-ping ; Hu, Lu ; Huang, Wen-cai</creatorcontrib><description>In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied to extract reversion point in the self-mixing interference signal, thus the pulse wave profile is successfully reconstructed. Considering the blood pressure values are intrinsically related to characteristic parameters of the pulse wave, 80 samples from the MIMIC-II database are used to train the extreme learning machine blood pressure model. In the experiment, 15 measured samples of pulse wave signal are used as the prediction sets. The results show that the errors of systolic and diastolic blood pressure are both within 5 mmHg compared with that by the Coriolis method.</description><identifier>ISSN: 1673-1905</identifier><identifier>EISSN: 1993-5013</identifier><identifier>DOI: 10.1007/s11801-020-0050-x</identifier><language>eng</language><publisher>Tianjin: Tianjin University of Technology</publisher><subject>Artificial neural networks ; Blood pressure ; Coriolis force ; Interferometry ; Lasers ; Machine learning ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Pressure measurement ; Real time ; Signal processing ; Wavelet transforms</subject><ispartof>Optoelectronics letters, 2020-11, Vol.16 (6), p.467-470</ispartof><rights>Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a123dd42306131e2291ab9280a28ffb11db6338a648b3cee174ea05ece999bb53</citedby><cites>FETCH-LOGICAL-c316t-a123dd42306131e2291ab9280a28ffb11db6338a648b3cee174ea05ece999bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11801-020-0050-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11801-020-0050-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xiu-lin</creatorcontrib><creatorcontrib>Lü, Li-ping</creatorcontrib><creatorcontrib>Hu, Lu</creatorcontrib><creatorcontrib>Huang, Wen-cai</creatorcontrib><title>Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine</title><title>Optoelectronics letters</title><addtitle>Optoelectron. Lett</addtitle><description>In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied to extract reversion point in the self-mixing interference signal, thus the pulse wave profile is successfully reconstructed. Considering the blood pressure values are intrinsically related to characteristic parameters of the pulse wave, 80 samples from the MIMIC-II database are used to train the extreme learning machine blood pressure model. In the experiment, 15 measured samples of pulse wave signal are used as the prediction sets. The results show that the errors of systolic and diastolic blood pressure are both within 5 mmHg compared with that by the Coriolis method.</description><subject>Artificial neural networks</subject><subject>Blood pressure</subject><subject>Coriolis force</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure measurement</subject><subject>Real time</subject><subject>Signal processing</subject><subject>Wavelet transforms</subject><issn>1673-1905</issn><issn>1993-5013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYsoOIzzA9wFXEfvTfrKUgZfIAii65C0tzMd2nRMWuz8e1squPJuzll851w4UXSNcIsA2V1AzAE5COAACfDxLFqhUpIngPJ88mkmOSpILqNNCAeYToosj9Uq8u9kGt7XLbH90BrHbNN1JTt6CmHwxFoys7bkemZNoJJ1jjWT8SxQU_G2Hmu3Y7XryVfku5Z6f2Lfdb9nNPZzkDVkvJuh1hT72tFVdFGZJtDmV9fR5-PDx_aZv749vWzvX3khMe25QSHLMhYSUpRIQig0VokcjMiryiKWNpUyN2mcW1kQYRaTgYQKUkpZm8h1dLP0Hn33NVDo9aEbvJteahFnMgelcjFRuFCF70LwVOmjr1vjTxpBz-vqZV09ravndfU4ZcSSCRPrduT_mv8P_QDaBX8O</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Wang, Xiu-lin</creator><creator>Lü, Li-ping</creator><creator>Hu, Lu</creator><creator>Huang, Wen-cai</creator><general>Tianjin University of Technology</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine</title><author>Wang, Xiu-lin ; Lü, Li-ping ; Hu, Lu ; Huang, Wen-cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a123dd42306131e2291ab9280a28ffb11db6338a648b3cee174ea05ece999bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Blood pressure</topic><topic>Coriolis force</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure measurement</topic><topic>Real time</topic><topic>Signal processing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiu-lin</creatorcontrib><creatorcontrib>Lü, Li-ping</creatorcontrib><creatorcontrib>Hu, Lu</creatorcontrib><creatorcontrib>Huang, Wen-cai</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiu-lin</au><au>Lü, Li-ping</au><au>Hu, Lu</au><au>Huang, Wen-cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine</atitle><jtitle>Optoelectronics letters</jtitle><stitle>Optoelectron. Lett</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>467</spage><epage>470</epage><pages>467-470</pages><issn>1673-1905</issn><eissn>1993-5013</eissn><abstract>In this paper, we present a method based on self-mixing interferometry combing extreme learning machine for real-time human blood pressure measurement. A signal processing method based on wavelet transform is applied to extract reversion point in the self-mixing interference signal, thus the pulse wave profile is successfully reconstructed. Considering the blood pressure values are intrinsically related to characteristic parameters of the pulse wave, 80 samples from the MIMIC-II database are used to train the extreme learning machine blood pressure model. In the experiment, 15 measured samples of pulse wave signal are used as the prediction sets. The results show that the errors of systolic and diastolic blood pressure are both within 5 mmHg compared with that by the Coriolis method.</abstract><cop>Tianjin</cop><pub>Tianjin University of Technology</pub><doi>10.1007/s11801-020-0050-x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1673-1905
ispartof Optoelectronics letters, 2020-11, Vol.16 (6), p.467-470
issn 1673-1905
1993-5013
language eng
recordid cdi_proquest_journals_2473809982
source SpringerNature Complete Journals; Alma/SFX Local Collection
subjects Artificial neural networks
Blood pressure
Coriolis force
Interferometry
Lasers
Machine learning
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Pressure measurement
Real time
Signal processing
Wavelet transforms
title Real-time human blood pressure measurement based on laser self-mixing interferometry with extreme learning machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20human%20blood%20pressure%20measurement%20based%20on%20laser%20self-mixing%20interferometry%20with%20extreme%20learning%20machine&rft.jtitle=Optoelectronics%20letters&rft.au=Wang,%20Xiu-lin&rft.date=2020-11-01&rft.volume=16&rft.issue=6&rft.spage=467&rft.epage=470&rft.pages=467-470&rft.issn=1673-1905&rft.eissn=1993-5013&rft_id=info:doi/10.1007/s11801-020-0050-x&rft_dat=%3Cproquest_cross%3E2473809982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473809982&rft_id=info:pmid/&rfr_iscdi=true