Surfaces of Revolution of Frontals in the Euclidean Space

For Legendre curves, we consider surfaces of revolution of frontals. The surface of revolution of a frontal can be considered as a framed base surface. We give the curvatures and basic invariants for surfaces of revolution by using the curvatures of Legendre curves. Moreover, we give properties of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2020-12, Vol.51 (4), p.887-914
Hauptverfasser: Takahashi, Masatomo, Teramoto, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 914
container_issue 4
container_start_page 887
container_title Boletim da Sociedade Brasileira de Matemática
container_volume 51
creator Takahashi, Masatomo
Teramoto, Keisuke
description For Legendre curves, we consider surfaces of revolution of frontals. The surface of revolution of a frontal can be considered as a framed base surface. We give the curvatures and basic invariants for surfaces of revolution by using the curvatures of Legendre curves. Moreover, we give properties of surfaces of revolution with singularities and cones.
doi_str_mv 10.1007/s00574-019-00180-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473804419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473804419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d469b8772121e3da7f8c54c774fe2df185cfca03e267b89ece0a5d5434e9425e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz6uTr032KKVVoSBYPYc0O9EtdVOTXan_3tRVvHmaGeZ9ZuAh5ILCFQVQ1wlAKlECrUsAqqHcHZAJrZQulaLi8LeXQhyTk5TWAFBJySekXg7RW4epCL54xI-wGfo2dPtpHkPX200q2q7oX7GYDW7TNmi7YrnNxBk58nmL5z_1lDzPZ0_Tu3LxcHs_vVmUjmvZl42o6pVWilFGkTdWee2kcEoJj6zxVEvnnQWOrFIrXaNDsLKRggusBZPIT8nleHcbw_uAqTfrMMQuvzRMKK5BCFrnFBtTLoaUInqzje2bjZ-GgtkrMqMikxWZb0VmlyE-QimHuxeMf6f_ob4AZC1o4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473804419</pqid></control><display><type>article</type><title>Surfaces of Revolution of Frontals in the Euclidean Space</title><source>SpringerLink Journals</source><creator>Takahashi, Masatomo ; Teramoto, Keisuke</creator><creatorcontrib>Takahashi, Masatomo ; Teramoto, Keisuke</creatorcontrib><description>For Legendre curves, we consider surfaces of revolution of frontals. The surface of revolution of a frontal can be considered as a framed base surface. We give the curvatures and basic invariants for surfaces of revolution by using the curvatures of Legendre curves. Moreover, we give properties of surfaces of revolution with singularities and cones.</description><identifier>ISSN: 1678-7544</identifier><identifier>EISSN: 1678-7714</identifier><identifier>DOI: 10.1007/s00574-019-00180-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cones ; Curves ; Euclidean geometry ; Euclidean space ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Boletim da Sociedade Brasileira de Matemática, 2020-12, Vol.51 (4), p.887-914</ispartof><rights>Sociedade Brasileira de Matemática 2019</rights><rights>Sociedade Brasileira de Matemática 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d469b8772121e3da7f8c54c774fe2df185cfca03e267b89ece0a5d5434e9425e3</citedby><cites>FETCH-LOGICAL-c385t-d469b8772121e3da7f8c54c774fe2df185cfca03e267b89ece0a5d5434e9425e3</cites><orcidid>0000-0002-6990-4898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00574-019-00180-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00574-019-00180-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Takahashi, Masatomo</creatorcontrib><creatorcontrib>Teramoto, Keisuke</creatorcontrib><title>Surfaces of Revolution of Frontals in the Euclidean Space</title><title>Boletim da Sociedade Brasileira de Matemática</title><addtitle>Bull Braz Math Soc, New Series</addtitle><description>For Legendre curves, we consider surfaces of revolution of frontals. The surface of revolution of a frontal can be considered as a framed base surface. We give the curvatures and basic invariants for surfaces of revolution by using the curvatures of Legendre curves. Moreover, we give properties of surfaces of revolution with singularities and cones.</description><subject>Cones</subject><subject>Curves</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>1678-7544</issn><issn>1678-7714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz6uTr032KKVVoSBYPYc0O9EtdVOTXan_3tRVvHmaGeZ9ZuAh5ILCFQVQ1wlAKlECrUsAqqHcHZAJrZQulaLi8LeXQhyTk5TWAFBJySekXg7RW4epCL54xI-wGfo2dPtpHkPX200q2q7oX7GYDW7TNmi7YrnNxBk58nmL5z_1lDzPZ0_Tu3LxcHs_vVmUjmvZl42o6pVWilFGkTdWee2kcEoJj6zxVEvnnQWOrFIrXaNDsLKRggusBZPIT8nleHcbw_uAqTfrMMQuvzRMKK5BCFrnFBtTLoaUInqzje2bjZ-GgtkrMqMikxWZb0VmlyE-QimHuxeMf6f_ob4AZC1o4Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Takahashi, Masatomo</creator><creator>Teramoto, Keisuke</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6990-4898</orcidid></search><sort><creationdate>20201201</creationdate><title>Surfaces of Revolution of Frontals in the Euclidean Space</title><author>Takahashi, Masatomo ; Teramoto, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d469b8772121e3da7f8c54c774fe2df185cfca03e267b89ece0a5d5434e9425e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cones</topic><topic>Curves</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Masatomo</creatorcontrib><creatorcontrib>Teramoto, Keisuke</creatorcontrib><collection>CrossRef</collection><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Masatomo</au><au>Teramoto, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfaces of Revolution of Frontals in the Euclidean Space</atitle><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle><stitle>Bull Braz Math Soc, New Series</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>51</volume><issue>4</issue><spage>887</spage><epage>914</epage><pages>887-914</pages><issn>1678-7544</issn><eissn>1678-7714</eissn><abstract>For Legendre curves, we consider surfaces of revolution of frontals. The surface of revolution of a frontal can be considered as a framed base surface. We give the curvatures and basic invariants for surfaces of revolution by using the curvatures of Legendre curves. Moreover, we give properties of surfaces of revolution with singularities and cones.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00574-019-00180-x</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6990-4898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-7544
ispartof Boletim da Sociedade Brasileira de Matemática, 2020-12, Vol.51 (4), p.887-914
issn 1678-7544
1678-7714
language eng
recordid cdi_proquest_journals_2473804419
source SpringerLink Journals
subjects Cones
Curves
Euclidean geometry
Euclidean space
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title Surfaces of Revolution of Frontals in the Euclidean Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfaces%20of%20Revolution%20of%20Frontals%20in%20the%20Euclidean%20Space&rft.jtitle=Boletim%20da%20Sociedade%20Brasileira%20de%20Matem%C3%A1tica&rft.au=Takahashi,%20Masatomo&rft.date=2020-12-01&rft.volume=51&rft.issue=4&rft.spage=887&rft.epage=914&rft.pages=887-914&rft.issn=1678-7544&rft.eissn=1678-7714&rft_id=info:doi/10.1007/s00574-019-00180-x&rft_dat=%3Cproquest_cross%3E2473804419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473804419&rft_id=info:pmid/&rfr_iscdi=true