Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?

Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2020-12, Vol.25 (4), p.676-698
Hauptverfasser: Boer, Martin P., Piepho, Hans-Peter, Williams, Emlyn R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 4
container_start_page 676
container_title Journal of agricultural, biological, and environmental statistics
container_volume 25
creator Boer, Martin P.
Piepho, Hans-Peter
Williams, Emlyn R.
description Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.
doi_str_mv 10.1007/s13253-020-00412-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473804120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639817784</galeid><jstor_id>48736896</jstor_id><sourcerecordid>A639817784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</originalsourceid><addsrcrecordid>eNp9kV1rVDEQhg9FobX6BwqFQK8EU_N1kpzLpVotLCq2euNFyCaTbZazOWuSBf33Zj3F0hsJYYbheWcmebvujJJLSoh6WyhnPceEEUyIoAyLo-6E9lxhJgf-rOVE91hRqo67F6VsCKFcEnbS_VjGBDaj7zZHmxy8QV9w2Y2tWJBNHn2CuL5fTfuM3sUQIENjCgpTRrc7W6Md0cJv9qVuIVUUE7qOMHp015qN5WX3PLQArx7iafft-v3d1Ue8_Pzh5mqxxE70umItnBeBBC4AgOogrQLpmBuE9ivlgXiuGfFOSCbcELQkTq8c73veHrhq97S7mPvu8vRzD6WaTVs4tZGGCcX14UNIoy5nam1HMDGFqWbr2vGwjW5KEGKrLyQfNFVKiyZ4_UTQmAq_6truSzE3t1-fsmxmXZ5KyRDMLsetzb8NJebgkJkdMs0h89chcxDxWVQanNaQH_f-r-p8Vm1KnfK_OUIrLvUg-R-CH5tN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473804120</pqid></control><display><type>article</type><title>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Boer, Martin P. ; Piepho, Hans-Peter ; Williams, Emlyn R.</creator><creatorcontrib>Boer, Martin P. ; Piepho, Hans-Peter ; Williams, Emlyn R.</creatorcontrib><description>Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-020-00412-4</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Agriculture ; Biostatistics ; Covariance ; Health Sciences ; Linear functions ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Random walk ; Spatial analysis ; Spline functions ; Statistics ; Statistics for Life Sciences ; Two dimensional models ; Variance</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2020-12, Vol.25 (4), p.676-698</ispartof><rights>2020 The Author(s)</rights><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</citedby><cites>FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48736896$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48736896$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,41464,42533,51294,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Boer, Martin P.</creatorcontrib><creatorcontrib>Piepho, Hans-Peter</creatorcontrib><creatorcontrib>Williams, Emlyn R.</creatorcontrib><title>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.</description><subject>Agriculture</subject><subject>Biostatistics</subject><subject>Covariance</subject><subject>Health Sciences</subject><subject>Linear functions</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Random walk</subject><subject>Spatial analysis</subject><subject>Spline functions</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>Two dimensional models</subject><subject>Variance</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kV1rVDEQhg9FobX6BwqFQK8EU_N1kpzLpVotLCq2euNFyCaTbZazOWuSBf33Zj3F0hsJYYbheWcmebvujJJLSoh6WyhnPceEEUyIoAyLo-6E9lxhJgf-rOVE91hRqo67F6VsCKFcEnbS_VjGBDaj7zZHmxy8QV9w2Y2tWJBNHn2CuL5fTfuM3sUQIENjCgpTRrc7W6Md0cJv9qVuIVUUE7qOMHp015qN5WX3PLQArx7iafft-v3d1Ue8_Pzh5mqxxE70umItnBeBBC4AgOogrQLpmBuE9ivlgXiuGfFOSCbcELQkTq8c73veHrhq97S7mPvu8vRzD6WaTVs4tZGGCcX14UNIoy5nam1HMDGFqWbr2vGwjW5KEGKrLyQfNFVKiyZ4_UTQmAq_6truSzE3t1-fsmxmXZ5KyRDMLsetzb8NJebgkJkdMs0h89chcxDxWVQanNaQH_f-r-p8Vm1KnfK_OUIrLvUg-R-CH5tN</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Boer, Martin P.</creator><creator>Piepho, Hans-Peter</creator><creator>Williams, Emlyn R.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201201</creationdate><title>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials</title><author>Boer, Martin P. ; Piepho, Hans-Peter ; Williams, Emlyn R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Biostatistics</topic><topic>Covariance</topic><topic>Health Sciences</topic><topic>Linear functions</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Random walk</topic><topic>Spatial analysis</topic><topic>Spline functions</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>Two dimensional models</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boer, Martin P.</creatorcontrib><creatorcontrib>Piepho, Hans-Peter</creatorcontrib><creatorcontrib>Williams, Emlyn R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boer, Martin P.</au><au>Piepho, Hans-Peter</au><au>Williams, Emlyn R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>4</issue><spage>676</spage><epage>698</epage><pages>676-698</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s13253-020-00412-4</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2020-12, Vol.25 (4), p.676-698
issn 1085-7117
1537-2693
language eng
recordid cdi_proquest_journals_2473804120
source Jstor Complete Legacy; SpringerLink Journals - AutoHoldings; JSTOR Mathematics & Statistics
subjects Agriculture
Biostatistics
Covariance
Health Sciences
Linear functions
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
Random walk
Spatial analysis
Spline functions
Statistics
Statistics for Life Sciences
Two dimensional models
Variance
title Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Variance,%20P-splines%20and%20Neighbour%20Differences%20for%20Spatial%20Adjustment%20in%20Field%20Trials:%20How%20are%20they%20Related?&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Boer,%20Martin%20P.&rft.date=2020-12-01&rft.volume=25&rft.issue=4&rft.spage=676&rft.epage=698&rft.pages=676-698&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-020-00412-4&rft_dat=%3Cgale_proqu%3EA639817784%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473804120&rft_id=info:pmid/&rft_galeid=A639817784&rft_jstor_id=48736896&rfr_iscdi=true