Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?
Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2020-12, Vol.25 (4), p.676-698 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 4 |
container_start_page | 676 |
container_title | Journal of agricultural, biological, and environmental statistics |
container_volume | 25 |
creator | Boer, Martin P. Piepho, Hans-Peter Williams, Emlyn R. |
description | Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework. |
doi_str_mv | 10.1007/s13253-020-00412-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473804120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639817784</galeid><jstor_id>48736896</jstor_id><sourcerecordid>A639817784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</originalsourceid><addsrcrecordid>eNp9kV1rVDEQhg9FobX6BwqFQK8EU_N1kpzLpVotLCq2euNFyCaTbZazOWuSBf33Zj3F0hsJYYbheWcmebvujJJLSoh6WyhnPceEEUyIoAyLo-6E9lxhJgf-rOVE91hRqo67F6VsCKFcEnbS_VjGBDaj7zZHmxy8QV9w2Y2tWJBNHn2CuL5fTfuM3sUQIENjCgpTRrc7W6Md0cJv9qVuIVUUE7qOMHp015qN5WX3PLQArx7iafft-v3d1Ue8_Pzh5mqxxE70umItnBeBBC4AgOogrQLpmBuE9ivlgXiuGfFOSCbcELQkTq8c73veHrhq97S7mPvu8vRzD6WaTVs4tZGGCcX14UNIoy5nam1HMDGFqWbr2vGwjW5KEGKrLyQfNFVKiyZ4_UTQmAq_6truSzE3t1-fsmxmXZ5KyRDMLsetzb8NJebgkJkdMs0h89chcxDxWVQanNaQH_f-r-p8Vm1KnfK_OUIrLvUg-R-CH5tN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473804120</pqid></control><display><type>article</type><title>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><source>JSTOR Mathematics & Statistics</source><creator>Boer, Martin P. ; Piepho, Hans-Peter ; Williams, Emlyn R.</creator><creatorcontrib>Boer, Martin P. ; Piepho, Hans-Peter ; Williams, Emlyn R.</creatorcontrib><description>Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-020-00412-4</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Agriculture ; Biostatistics ; Covariance ; Health Sciences ; Linear functions ; Mathematics and Statistics ; Medicine ; Monitoring/Environmental Analysis ; Random walk ; Spatial analysis ; Spline functions ; Statistics ; Statistics for Life Sciences ; Two dimensional models ; Variance</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2020-12, Vol.25 (4), p.676-698</ispartof><rights>2020 The Author(s)</rights><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</citedby><cites>FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48736896$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48736896$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,41464,42533,51294,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Boer, Martin P.</creatorcontrib><creatorcontrib>Piepho, Hans-Peter</creatorcontrib><creatorcontrib>Williams, Emlyn R.</creatorcontrib><title>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.</description><subject>Agriculture</subject><subject>Biostatistics</subject><subject>Covariance</subject><subject>Health Sciences</subject><subject>Linear functions</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Random walk</subject><subject>Spatial analysis</subject><subject>Spline functions</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>Two dimensional models</subject><subject>Variance</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kV1rVDEQhg9FobX6BwqFQK8EU_N1kpzLpVotLCq2euNFyCaTbZazOWuSBf33Zj3F0hsJYYbheWcmebvujJJLSoh6WyhnPceEEUyIoAyLo-6E9lxhJgf-rOVE91hRqo67F6VsCKFcEnbS_VjGBDaj7zZHmxy8QV9w2Y2tWJBNHn2CuL5fTfuM3sUQIENjCgpTRrc7W6Md0cJv9qVuIVUUE7qOMHp015qN5WX3PLQArx7iafft-v3d1Ue8_Pzh5mqxxE70umItnBeBBC4AgOogrQLpmBuE9ivlgXiuGfFOSCbcELQkTq8c73veHrhq97S7mPvu8vRzD6WaTVs4tZGGCcX14UNIoy5nam1HMDGFqWbr2vGwjW5KEGKrLyQfNFVKiyZ4_UTQmAq_6truSzE3t1-fsmxmXZ5KyRDMLsetzb8NJebgkJkdMs0h89chcxDxWVQanNaQH_f-r-p8Vm1KnfK_OUIrLvUg-R-CH5tN</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Boer, Martin P.</creator><creator>Piepho, Hans-Peter</creator><creator>Williams, Emlyn R.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201201</creationdate><title>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials</title><author>Boer, Martin P. ; Piepho, Hans-Peter ; Williams, Emlyn R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-84cd4f0f34eee18f6a7e6c2c948db7de0d3820dc4624c9f860c8bc3553153b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Biostatistics</topic><topic>Covariance</topic><topic>Health Sciences</topic><topic>Linear functions</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Random walk</topic><topic>Spatial analysis</topic><topic>Spline functions</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>Two dimensional models</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boer, Martin P.</creatorcontrib><creatorcontrib>Piepho, Hans-Peter</creatorcontrib><creatorcontrib>Williams, Emlyn R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boer, Martin P.</au><au>Piepho, Hans-Peter</au><au>Williams, Emlyn R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>4</issue><spage>676</spage><epage>698</epage><pages>676-698</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s13253-020-00412-4</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-7117 |
ispartof | Journal of agricultural, biological, and environmental statistics, 2020-12, Vol.25 (4), p.676-698 |
issn | 1085-7117 1537-2693 |
language | eng |
recordid | cdi_proquest_journals_2473804120 |
source | Jstor Complete Legacy; SpringerLink Journals - AutoHoldings; JSTOR Mathematics & Statistics |
subjects | Agriculture Biostatistics Covariance Health Sciences Linear functions Mathematics and Statistics Medicine Monitoring/Environmental Analysis Random walk Spatial analysis Spline functions Statistics Statistics for Life Sciences Two dimensional models Variance |
title | Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Variance,%20P-splines%20and%20Neighbour%20Differences%20for%20Spatial%20Adjustment%20in%20Field%20Trials:%20How%20are%20they%20Related?&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Boer,%20Martin%20P.&rft.date=2020-12-01&rft.volume=25&rft.issue=4&rft.spage=676&rft.epage=698&rft.pages=676-698&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-020-00412-4&rft_dat=%3Cgale_proqu%3EA639817784%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473804120&rft_id=info:pmid/&rft_galeid=A639817784&rft_jstor_id=48736896&rfr_iscdi=true |