RNN based question answer generation and ranking for financial documents using financial NER
Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summariz...
Gespeichert in:
Veröffentlicht in: | Sadhana (Bangalore) 2020, Vol.45 (1), Article 269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Sadhana (Bangalore) |
container_volume | 45 |
creator | Jayakumar, Hariharan Krishnakumar, Madhav Sankar Peddagopu, Vishal Veda Vyas Sridhar, Rajeswari |
description | Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage. |
doi_str_mv | 10.1007/s12046-020-01501-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473802304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473802304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrf6Ap4Dn6CTZzewepVQrlApFb0LIZrNla5utSRfx743dojcvM8PMe29mHiHXHG45AN5FLiBTDAQw4DlwJk_ICEqUDBXiaapFrpjIyvKcXMS4BhAIhRyRt-ViQSsTXU0_ehf3beep8fHTBbpy3gVz7NQ0GP_e-hVtukCb1htvW7OhdWf7rfP7SPt4mP5OFtPlJTlrzCa6q2Mek9eH6ctkxubPj0-T-zmzEsWeGWUqbm3GVYMOMK-Qi4IXmE4uShRQ5I1Isa4VqBwrWxgUpUOb15kypazlmNwMurvQHb7Q664PPq3UIkNZgJCQJZQYUDZ0MQbX6F1otyZ8aQ76x0U9uKiTi_rgopaJJAdSTGC_cuFP-h_WN5atdBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473802304</pqid></control><display><type>article</type><title>RNN based question answer generation and ranking for financial documents using financial NER</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><creator>Jayakumar, Hariharan ; Krishnakumar, Madhav Sankar ; Peddagopu, Vishal Veda Vyas ; Sridhar, Rajeswari</creator><creatorcontrib>Jayakumar, Hariharan ; Krishnakumar, Madhav Sankar ; Peddagopu, Vishal Veda Vyas ; Sridhar, Rajeswari</creatorcontrib><description>Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-020-01501-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Engineering ; Expert systems ; Finance ; Questions</subject><ispartof>Sadhana (Bangalore), 2020, Vol.45 (1), Article 269</ispartof><rights>Indian Academy of Sciences 2020</rights><rights>Indian Academy of Sciences 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</citedby><cites>FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</cites><orcidid>0000-0003-1204-1056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12046-020-01501-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12046-020-01501-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jayakumar, Hariharan</creatorcontrib><creatorcontrib>Krishnakumar, Madhav Sankar</creatorcontrib><creatorcontrib>Peddagopu, Vishal Veda Vyas</creatorcontrib><creatorcontrib>Sridhar, Rajeswari</creatorcontrib><title>RNN based question answer generation and ranking for financial documents using financial NER</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.</description><subject>Engineering</subject><subject>Expert systems</subject><subject>Finance</subject><subject>Questions</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrf6Ap4Dn6CTZzewepVQrlApFb0LIZrNla5utSRfx743dojcvM8PMe29mHiHXHG45AN5FLiBTDAQw4DlwJk_ICEqUDBXiaapFrpjIyvKcXMS4BhAIhRyRt-ViQSsTXU0_ehf3beep8fHTBbpy3gVz7NQ0GP_e-hVtukCb1htvW7OhdWf7rfP7SPt4mP5OFtPlJTlrzCa6q2Mek9eH6ctkxubPj0-T-zmzEsWeGWUqbm3GVYMOMK-Qi4IXmE4uShRQ5I1Isa4VqBwrWxgUpUOb15kypazlmNwMurvQHb7Q664PPq3UIkNZgJCQJZQYUDZ0MQbX6F1otyZ8aQ76x0U9uKiTi_rgopaJJAdSTGC_cuFP-h_WN5atdBg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jayakumar, Hariharan</creator><creator>Krishnakumar, Madhav Sankar</creator><creator>Peddagopu, Vishal Veda Vyas</creator><creator>Sridhar, Rajeswari</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1204-1056</orcidid></search><sort><creationdate>2020</creationdate><title>RNN based question answer generation and ranking for financial documents using financial NER</title><author>Jayakumar, Hariharan ; Krishnakumar, Madhav Sankar ; Peddagopu, Vishal Veda Vyas ; Sridhar, Rajeswari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Expert systems</topic><topic>Finance</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayakumar, Hariharan</creatorcontrib><creatorcontrib>Krishnakumar, Madhav Sankar</creatorcontrib><creatorcontrib>Peddagopu, Vishal Veda Vyas</creatorcontrib><creatorcontrib>Sridhar, Rajeswari</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayakumar, Hariharan</au><au>Krishnakumar, Madhav Sankar</au><au>Peddagopu, Vishal Veda Vyas</au><au>Sridhar, Rajeswari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNN based question answer generation and ranking for financial documents using financial NER</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2020</date><risdate>2020</risdate><volume>45</volume><issue>1</issue><artnum>269</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-020-01501-3</doi><orcidid>https://orcid.org/0000-0003-1204-1056</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-2499 |
ispartof | Sadhana (Bangalore), 2020, Vol.45 (1), Article 269 |
issn | 0256-2499 0973-7677 |
language | eng |
recordid | cdi_proquest_journals_2473802304 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences; Springer Nature - Complete Springer Journals |
subjects | Engineering Expert systems Finance Questions |
title | RNN based question answer generation and ranking for financial documents using financial NER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNN%20based%20question%20answer%20generation%20and%20ranking%20for%20financial%20documents%20using%20financial%20NER&rft.jtitle=Sadhana%20(Bangalore)&rft.au=Jayakumar,%20Hariharan&rft.date=2020&rft.volume=45&rft.issue=1&rft.artnum=269&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-020-01501-3&rft_dat=%3Cproquest_cross%3E2473802304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473802304&rft_id=info:pmid/&rfr_iscdi=true |