RNN based question answer generation and ranking for financial documents using financial NER

Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summariz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sadhana (Bangalore) 2020, Vol.45 (1), Article 269
Hauptverfasser: Jayakumar, Hariharan, Krishnakumar, Madhav Sankar, Peddagopu, Vishal Veda Vyas, Sridhar, Rajeswari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Sadhana (Bangalore)
container_volume 45
creator Jayakumar, Hariharan
Krishnakumar, Madhav Sankar
Peddagopu, Vishal Veda Vyas
Sridhar, Rajeswari
description Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.
doi_str_mv 10.1007/s12046-020-01501-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473802304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473802304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgrf6Ap4Dn6CTZzewepVQrlApFb0LIZrNla5utSRfx743dojcvM8PMe29mHiHXHG45AN5FLiBTDAQw4DlwJk_ICEqUDBXiaapFrpjIyvKcXMS4BhAIhRyRt-ViQSsTXU0_ehf3beep8fHTBbpy3gVz7NQ0GP_e-hVtukCb1htvW7OhdWf7rfP7SPt4mP5OFtPlJTlrzCa6q2Mek9eH6ctkxubPj0-T-zmzEsWeGWUqbm3GVYMOMK-Qi4IXmE4uShRQ5I1Isa4VqBwrWxgUpUOb15kypazlmNwMurvQHb7Q664PPq3UIkNZgJCQJZQYUDZ0MQbX6F1otyZ8aQ76x0U9uKiTi_rgopaJJAdSTGC_cuFP-h_WN5atdBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473802304</pqid></control><display><type>article</type><title>RNN based question answer generation and ranking for financial documents using financial NER</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><creator>Jayakumar, Hariharan ; Krishnakumar, Madhav Sankar ; Peddagopu, Vishal Veda Vyas ; Sridhar, Rajeswari</creator><creatorcontrib>Jayakumar, Hariharan ; Krishnakumar, Madhav Sankar ; Peddagopu, Vishal Veda Vyas ; Sridhar, Rajeswari</creatorcontrib><description>Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-020-01501-3</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Engineering ; Expert systems ; Finance ; Questions</subject><ispartof>Sadhana (Bangalore), 2020, Vol.45 (1), Article 269</ispartof><rights>Indian Academy of Sciences 2020</rights><rights>Indian Academy of Sciences 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</citedby><cites>FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</cites><orcidid>0000-0003-1204-1056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12046-020-01501-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12046-020-01501-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Jayakumar, Hariharan</creatorcontrib><creatorcontrib>Krishnakumar, Madhav Sankar</creatorcontrib><creatorcontrib>Peddagopu, Vishal Veda Vyas</creatorcontrib><creatorcontrib>Sridhar, Rajeswari</creatorcontrib><title>RNN based question answer generation and ranking for financial documents using financial NER</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.</description><subject>Engineering</subject><subject>Expert systems</subject><subject>Finance</subject><subject>Questions</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgrf6Ap4Dn6CTZzewepVQrlApFb0LIZrNla5utSRfx743dojcvM8PMe29mHiHXHG45AN5FLiBTDAQw4DlwJk_ICEqUDBXiaapFrpjIyvKcXMS4BhAIhRyRt-ViQSsTXU0_ehf3beep8fHTBbpy3gVz7NQ0GP_e-hVtukCb1htvW7OhdWf7rfP7SPt4mP5OFtPlJTlrzCa6q2Mek9eH6ctkxubPj0-T-zmzEsWeGWUqbm3GVYMOMK-Qi4IXmE4uShRQ5I1Isa4VqBwrWxgUpUOb15kypazlmNwMurvQHb7Q664PPq3UIkNZgJCQJZQYUDZ0MQbX6F1otyZ8aQ76x0U9uKiTi_rgopaJJAdSTGC_cuFP-h_WN5atdBg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jayakumar, Hariharan</creator><creator>Krishnakumar, Madhav Sankar</creator><creator>Peddagopu, Vishal Veda Vyas</creator><creator>Sridhar, Rajeswari</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1204-1056</orcidid></search><sort><creationdate>2020</creationdate><title>RNN based question answer generation and ranking for financial documents using financial NER</title><author>Jayakumar, Hariharan ; Krishnakumar, Madhav Sankar ; Peddagopu, Vishal Veda Vyas ; Sridhar, Rajeswari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a6ab1cc416f7e075b71281872568972085f2208dd60657bc8a729e7c5d46a93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Expert systems</topic><topic>Finance</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayakumar, Hariharan</creatorcontrib><creatorcontrib>Krishnakumar, Madhav Sankar</creatorcontrib><creatorcontrib>Peddagopu, Vishal Veda Vyas</creatorcontrib><creatorcontrib>Sridhar, Rajeswari</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayakumar, Hariharan</au><au>Krishnakumar, Madhav Sankar</au><au>Peddagopu, Vishal Veda Vyas</au><au>Sridhar, Rajeswari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNN based question answer generation and ranking for financial documents using financial NER</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2020</date><risdate>2020</risdate><volume>45</volume><issue>1</issue><artnum>269</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>Organizations, governments and many entities deal with an expanse of voluminous financial documents and this necessitates a need for a financial expert system which, given a financial document, extracts finance-related questions and answers from it. This expert system helps us to adequately summarize the document in the form of a question-answer report. This paper introduces the novel idea of generating finance-related questions and answers from financial documents by introducing a custom Financial Named Entity Recognizer, which can identify financial entities in a document with an accuracy of 92%. We have introduced a method of generating finance-based questions using a sample document to obtain a set of generalized questions that we can feed to any similar financial document. We also record the expected answer type during the question generation phase, which helps to develop a robust mechanism to verify that we always generate the correct answers during the answer extraction stage.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-020-01501-3</doi><orcidid>https://orcid.org/0000-0003-1204-1056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0256-2499
ispartof Sadhana (Bangalore), 2020, Vol.45 (1), Article 269
issn 0256-2499
0973-7677
language eng
recordid cdi_proquest_journals_2473802304
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences; Springer Nature - Complete Springer Journals
subjects Engineering
Expert systems
Finance
Questions
title RNN based question answer generation and ranking for financial documents using financial NER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNN%20based%20question%20answer%20generation%20and%20ranking%20for%20financial%20documents%20using%20financial%20NER&rft.jtitle=Sadhana%20(Bangalore)&rft.au=Jayakumar,%20Hariharan&rft.date=2020&rft.volume=45&rft.issue=1&rft.artnum=269&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-020-01501-3&rft_dat=%3Cproquest_cross%3E2473802304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473802304&rft_id=info:pmid/&rfr_iscdi=true