Deformation and Long-Term Strength of a Thick-Walled Tube of a Physically Non-Linear Viscoelastic Material under Constant Pressure

An exact solution is constructed for the problem of creep and fracture of a hollow cylinder made of a physically nonlinear rheonomic isotropic incompressible material, which obeys Rabotnov’s constitutive viscoelasticity relation with two arbitrary material functions, under the action of internal and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian metallurgy Metally 2020-10, Vol.2020 (10), p.1079-1087
1. Verfasser: Khokhlov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue 10
container_start_page 1079
container_title Russian metallurgy Metally
container_volume 2020
creator Khokhlov, A. V.
description An exact solution is constructed for the problem of creep and fracture of a hollow cylinder made of a physically nonlinear rheonomic isotropic incompressible material, which obeys Rabotnov’s constitutive viscoelasticity relation with two arbitrary material functions, under the action of internal and external pressures. Сlosed form equations for long-term strength curves are derived using three versions of a deformation fracture criterion, and the strain intensity, the maximum shear strain, or the maximum tensile strain is chosen as the measure of damage. Their properties are analytically investigated for arbitrary material functions of the constitutive relation.
doi_str_mv 10.1134/S0036029520100122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473801867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473801867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-265dead10cf1bb40482b1adaa63f0f0297af95ae20928d49a7ae149e48d134293</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwOuo3cm76XUJ0QtNOoy3CQ3bWo6U2cmi279clMiuBBXF87rcg5j5wIuhfCDqwWAH4FMQwkCQEh5wCYiDEMvkmF4yCZ72tvzx-zE2jVADBClE_Z1Q402G3StVhxVzTOtll5OZsMXzpBauhXXDUeer9rqw3vHrqOa531JIzxf7WxbDeiOP2vlZa0iNPyttZWmDq1rK_6EjkyLHe9VTYbPtLIOleNzQ9b2hk7ZUYOdpbOfO2Wvd7f57MHLXu4fZ9eZV_kicp6MwpqwFlA1oiwDCBJZCqwRI7-BZqgWY5OGSBJSmdRBijGSCFIKknoYSKb-lF2MuVujP3uyrljr3qjhZSGD2E9AJFE8qMSoqoy21lBTbE27QbMrBBT7qYs_Uw8eOXrsoFVLMr_J_5u-AVRLgIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473801867</pqid></control><display><type>article</type><title>Deformation and Long-Term Strength of a Thick-Walled Tube of a Physically Non-Linear Viscoelastic Material under Constant Pressure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khokhlov, A. V.</creator><creatorcontrib>Khokhlov, A. V.</creatorcontrib><description>An exact solution is constructed for the problem of creep and fracture of a hollow cylinder made of a physically nonlinear rheonomic isotropic incompressible material, which obeys Rabotnov’s constitutive viscoelasticity relation with two arbitrary material functions, under the action of internal and external pressures. Сlosed form equations for long-term strength curves are derived using three versions of a deformation fracture criterion, and the strain intensity, the maximum shear strain, or the maximum tensile strain is chosen as the measure of damage. Their properties are analytically investigated for arbitrary material functions of the constitutive relation.</description><identifier>ISSN: 0036-0295</identifier><identifier>EISSN: 1555-6255</identifier><identifier>EISSN: 1531-8648</identifier><identifier>DOI: 10.1134/S0036029520100122</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry and Materials Science ; Constitutive relationships ; Creep (materials) ; Deformation ; Deformation and Fracture Mechanics ; Exact solutions ; External pressure ; Isotropic material ; Materials Science ; Metallic Materials ; Shear strain ; Tensile strain ; Viscoelasticity</subject><ispartof>Russian metallurgy Metally, 2020-10, Vol.2020 (10), p.1079-1087</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-265dead10cf1bb40482b1adaa63f0f0297af95ae20928d49a7ae149e48d134293</citedby><cites>FETCH-LOGICAL-c316t-265dead10cf1bb40482b1adaa63f0f0297af95ae20928d49a7ae149e48d134293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0036029520100122$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0036029520100122$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khokhlov, A. V.</creatorcontrib><title>Deformation and Long-Term Strength of a Thick-Walled Tube of a Physically Non-Linear Viscoelastic Material under Constant Pressure</title><title>Russian metallurgy Metally</title><addtitle>Russ. Metall</addtitle><description>An exact solution is constructed for the problem of creep and fracture of a hollow cylinder made of a physically nonlinear rheonomic isotropic incompressible material, which obeys Rabotnov’s constitutive viscoelasticity relation with two arbitrary material functions, under the action of internal and external pressures. Сlosed form equations for long-term strength curves are derived using three versions of a deformation fracture criterion, and the strain intensity, the maximum shear strain, or the maximum tensile strain is chosen as the measure of damage. Their properties are analytically investigated for arbitrary material functions of the constitutive relation.</description><subject>Chemistry and Materials Science</subject><subject>Constitutive relationships</subject><subject>Creep (materials)</subject><subject>Deformation</subject><subject>Deformation and Fracture Mechanics</subject><subject>Exact solutions</subject><subject>External pressure</subject><subject>Isotropic material</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Shear strain</subject><subject>Tensile strain</subject><subject>Viscoelasticity</subject><issn>0036-0295</issn><issn>1555-6255</issn><issn>1531-8648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBWv0AdwOuo3cm76XUJ0QtNOoy3CQ3bWo6U2cmi279clMiuBBXF87rcg5j5wIuhfCDqwWAH4FMQwkCQEh5wCYiDEMvkmF4yCZ72tvzx-zE2jVADBClE_Z1Q402G3StVhxVzTOtll5OZsMXzpBauhXXDUeer9rqw3vHrqOa531JIzxf7WxbDeiOP2vlZa0iNPyttZWmDq1rK_6EjkyLHe9VTYbPtLIOleNzQ9b2hk7ZUYOdpbOfO2Wvd7f57MHLXu4fZ9eZV_kicp6MwpqwFlA1oiwDCBJZCqwRI7-BZqgWY5OGSBJSmdRBijGSCFIKknoYSKb-lF2MuVujP3uyrljr3qjhZSGD2E9AJFE8qMSoqoy21lBTbE27QbMrBBT7qYs_Uw8eOXrsoFVLMr_J_5u-AVRLgIs</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Khokhlov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201001</creationdate><title>Deformation and Long-Term Strength of a Thick-Walled Tube of a Physically Non-Linear Viscoelastic Material under Constant Pressure</title><author>Khokhlov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-265dead10cf1bb40482b1adaa63f0f0297af95ae20928d49a7ae149e48d134293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Materials Science</topic><topic>Constitutive relationships</topic><topic>Creep (materials)</topic><topic>Deformation</topic><topic>Deformation and Fracture Mechanics</topic><topic>Exact solutions</topic><topic>External pressure</topic><topic>Isotropic material</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Shear strain</topic><topic>Tensile strain</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khokhlov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian metallurgy Metally</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khokhlov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation and Long-Term Strength of a Thick-Walled Tube of a Physically Non-Linear Viscoelastic Material under Constant Pressure</atitle><jtitle>Russian metallurgy Metally</jtitle><stitle>Russ. Metall</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>2020</volume><issue>10</issue><spage>1079</spage><epage>1087</epage><pages>1079-1087</pages><issn>0036-0295</issn><eissn>1555-6255</eissn><eissn>1531-8648</eissn><abstract>An exact solution is constructed for the problem of creep and fracture of a hollow cylinder made of a physically nonlinear rheonomic isotropic incompressible material, which obeys Rabotnov’s constitutive viscoelasticity relation with two arbitrary material functions, under the action of internal and external pressures. Сlosed form equations for long-term strength curves are derived using three versions of a deformation fracture criterion, and the strain intensity, the maximum shear strain, or the maximum tensile strain is chosen as the measure of damage. Their properties are analytically investigated for arbitrary material functions of the constitutive relation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0036029520100122</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0295
ispartof Russian metallurgy Metally, 2020-10, Vol.2020 (10), p.1079-1087
issn 0036-0295
1555-6255
1531-8648
language eng
recordid cdi_proquest_journals_2473801867
source SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Constitutive relationships
Creep (materials)
Deformation
Deformation and Fracture Mechanics
Exact solutions
External pressure
Isotropic material
Materials Science
Metallic Materials
Shear strain
Tensile strain
Viscoelasticity
title Deformation and Long-Term Strength of a Thick-Walled Tube of a Physically Non-Linear Viscoelastic Material under Constant Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20and%20Long-Term%20Strength%20of%20a%20Thick-Walled%20Tube%20of%20a%20Physically%20Non-Linear%20Viscoelastic%20Material%20under%20Constant%20Pressure&rft.jtitle=Russian%20metallurgy%20Metally&rft.au=Khokhlov,%20A.%20V.&rft.date=2020-10-01&rft.volume=2020&rft.issue=10&rft.spage=1079&rft.epage=1087&rft.pages=1079-1087&rft.issn=0036-0295&rft.eissn=1555-6255&rft_id=info:doi/10.1134/S0036029520100122&rft_dat=%3Cproquest_cross%3E2473801867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473801867&rft_id=info:pmid/&rfr_iscdi=true