Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model
The mesoscopic parameters of numerical simulation cannot be directly obtained from laboratory test, and it is necessary to calibrate the parameters by comparing the numerical simulation results with the experimental results. To quickly and reasonably determine the mesoscopic parameters of limestone,...
Gespeichert in:
Veröffentlicht in: | Geomechanics and geophysics for geo-energy and geo-resources. 2020-12, Vol.6 (4), Article 68 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Geomechanics and geophysics for geo-energy and geo-resources. |
container_volume | 6 |
creator | Yang, Weimin Wang, Meixia Zhou, Zongqing Li, Liping Yang, Geng Ding, Ruosong |
description | The mesoscopic parameters of numerical simulation cannot be directly obtained from laboratory test, and it is necessary to calibrate the parameters by comparing the numerical simulation results with the experimental results. To quickly and reasonably determine the mesoscopic parameters of limestone, a unique variable principle is used to comprehensively analyze the quantitative relationship between mesoscopic and macroscopic parameters. The results show that: The elastic modulus is positively correlated with the shear and normal stiffness per unit area. The compressive strength increases linearly with the increase of normal and shear stiffness per unit area, and it has a power function growth relation to critical normal stress and shear stress. The cohesion is mainly affected by critical normal and shear stress. With an increase of the critical normal and shear stress, the cohesion decreases. The normal stiffness per unit area, shear stiffness per unit area, critical shear stress, and critical normal stress have little influence on the internal friction angle. But there is a linear relationship between the internal friction angle and shear stiffness per unit area, and the internal friction angle is linearly related to the critical shear stress. Considering the interaction of multiple parameters, the correlation criterion and empirical formula between the mesoscopic parameters and rock mechanical parameters in the Hertz–Mindlin with Bonding contact model are proposed. The peak load, elastic modulus, and stress–strain curve variation law obtained by laboratory test and numerical simulation are close to each other, which indicates the correlation criterion can accurately simulate the mechanical properties of limestone. |
doi_str_mv | 10.1007/s40948-020-00184-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473795781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473795781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-df326b21bc8a98cf4fe8e194b8d5ebe977cfce672fc8866f146287e83450d5013</originalsourceid><addsrcrecordid>eNp9kNtKxDAQhosouKz7Al4FvK7m1Ca9lMUTrAii1yFNJ9tIm9Sky6LP4EPbdT3ceTUz8P3_zPxZdkrwOcFYXCSOKy5zTHGOMZE8lwfZjLKS5ZJTcfjbk-o4W6TkaswILRkndJZ9PEICHU2LgkdjCyhCp0cXfGrdgGoYtwAe9drEkEwYnEHaN6iH9DP2YFrtndEdGnTUPYwQEwoWdW6ixuAB1TpBs_O_hTi-o3vnm855tHVji-rgG-fXqA8NdCfZkdVdgsV3nWfP11dPy9t89XBzt7xc5YaRaswby2hZU1IbqStpLLcggVS8lk0BNVRCGGugFNQaKcvSEl5SKUAyXuCmwITNs7O97xDD62a6Ur2ETfTTSkW5YKIqhNxRdE_tfk8RrBqi63V8UwSrXfBqH7yagldfwSs5idhelCbYryH-Wf-j-gQTzIkn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473795781</pqid></control><display><type>article</type><title>Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model</title><source>SpringerNature Journals</source><creator>Yang, Weimin ; Wang, Meixia ; Zhou, Zongqing ; Li, Liping ; Yang, Geng ; Ding, Ruosong</creator><creatorcontrib>Yang, Weimin ; Wang, Meixia ; Zhou, Zongqing ; Li, Liping ; Yang, Geng ; Ding, Ruosong</creatorcontrib><description>The mesoscopic parameters of numerical simulation cannot be directly obtained from laboratory test, and it is necessary to calibrate the parameters by comparing the numerical simulation results with the experimental results. To quickly and reasonably determine the mesoscopic parameters of limestone, a unique variable principle is used to comprehensively analyze the quantitative relationship between mesoscopic and macroscopic parameters. The results show that: The elastic modulus is positively correlated with the shear and normal stiffness per unit area. The compressive strength increases linearly with the increase of normal and shear stiffness per unit area, and it has a power function growth relation to critical normal stress and shear stress. The cohesion is mainly affected by critical normal and shear stress. With an increase of the critical normal and shear stress, the cohesion decreases. The normal stiffness per unit area, shear stiffness per unit area, critical shear stress, and critical normal stress have little influence on the internal friction angle. But there is a linear relationship between the internal friction angle and shear stiffness per unit area, and the internal friction angle is linearly related to the critical shear stress. Considering the interaction of multiple parameters, the correlation criterion and empirical formula between the mesoscopic parameters and rock mechanical parameters in the Hertz–Mindlin with Bonding contact model are proposed. The peak load, elastic modulus, and stress–strain curve variation law obtained by laboratory test and numerical simulation are close to each other, which indicates the correlation criterion can accurately simulate the mechanical properties of limestone.</description><identifier>ISSN: 2363-8419</identifier><identifier>EISSN: 2363-8427</identifier><identifier>DOI: 10.1007/s40948-020-00184-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adhesion ; Bonding ; Cohesion ; Compressive strength ; Contact stresses ; Correlation ; Criteria ; Empirical analysis ; Energy ; Engineering ; Environmental Science and Engineering ; Foundations ; Friction ; Geoengineering ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulics ; Interaction parameters ; Internal friction ; Laboratories ; Laboratory tests ; Limestone ; Mathematical models ; Mechanical properties ; Mindlin plates ; Modulus of elasticity ; Original Article ; Parameters ; Peak load ; Shear stiffness ; Shear stress ; Simulation ; Stress-strain curves ; Stress-strain relations</subject><ispartof>Geomechanics and geophysics for geo-energy and geo-resources., 2020-12, Vol.6 (4), Article 68</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-df326b21bc8a98cf4fe8e194b8d5ebe977cfce672fc8866f146287e83450d5013</citedby><cites>FETCH-LOGICAL-c319t-df326b21bc8a98cf4fe8e194b8d5ebe977cfce672fc8866f146287e83450d5013</cites><orcidid>0000-0003-4418-1264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40948-020-00184-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40948-020-00184-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Weimin</creatorcontrib><creatorcontrib>Wang, Meixia</creatorcontrib><creatorcontrib>Zhou, Zongqing</creatorcontrib><creatorcontrib>Li, Liping</creatorcontrib><creatorcontrib>Yang, Geng</creatorcontrib><creatorcontrib>Ding, Ruosong</creatorcontrib><title>Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model</title><title>Geomechanics and geophysics for geo-energy and geo-resources.</title><addtitle>Geomech. Geophys. Geo-energ. Geo-resour</addtitle><description>The mesoscopic parameters of numerical simulation cannot be directly obtained from laboratory test, and it is necessary to calibrate the parameters by comparing the numerical simulation results with the experimental results. To quickly and reasonably determine the mesoscopic parameters of limestone, a unique variable principle is used to comprehensively analyze the quantitative relationship between mesoscopic and macroscopic parameters. The results show that: The elastic modulus is positively correlated with the shear and normal stiffness per unit area. The compressive strength increases linearly with the increase of normal and shear stiffness per unit area, and it has a power function growth relation to critical normal stress and shear stress. The cohesion is mainly affected by critical normal and shear stress. With an increase of the critical normal and shear stress, the cohesion decreases. The normal stiffness per unit area, shear stiffness per unit area, critical shear stress, and critical normal stress have little influence on the internal friction angle. But there is a linear relationship between the internal friction angle and shear stiffness per unit area, and the internal friction angle is linearly related to the critical shear stress. Considering the interaction of multiple parameters, the correlation criterion and empirical formula between the mesoscopic parameters and rock mechanical parameters in the Hertz–Mindlin with Bonding contact model are proposed. The peak load, elastic modulus, and stress–strain curve variation law obtained by laboratory test and numerical simulation are close to each other, which indicates the correlation criterion can accurately simulate the mechanical properties of limestone.</description><subject>Adhesion</subject><subject>Bonding</subject><subject>Cohesion</subject><subject>Compressive strength</subject><subject>Contact stresses</subject><subject>Correlation</subject><subject>Criteria</subject><subject>Empirical analysis</subject><subject>Energy</subject><subject>Engineering</subject><subject>Environmental Science and Engineering</subject><subject>Foundations</subject><subject>Friction</subject><subject>Geoengineering</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Interaction parameters</subject><subject>Internal friction</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Limestone</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mindlin plates</subject><subject>Modulus of elasticity</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Peak load</subject><subject>Shear stiffness</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Stress-strain curves</subject><subject>Stress-strain relations</subject><issn>2363-8419</issn><issn>2363-8427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKxDAQhosouKz7Al4FvK7m1Ca9lMUTrAii1yFNJ9tIm9Sky6LP4EPbdT3ceTUz8P3_zPxZdkrwOcFYXCSOKy5zTHGOMZE8lwfZjLKS5ZJTcfjbk-o4W6TkaswILRkndJZ9PEICHU2LgkdjCyhCp0cXfGrdgGoYtwAe9drEkEwYnEHaN6iH9DP2YFrtndEdGnTUPYwQEwoWdW6ixuAB1TpBs_O_hTi-o3vnm855tHVji-rgG-fXqA8NdCfZkdVdgsV3nWfP11dPy9t89XBzt7xc5YaRaswby2hZU1IbqStpLLcggVS8lk0BNVRCGGugFNQaKcvSEl5SKUAyXuCmwITNs7O97xDD62a6Ur2ETfTTSkW5YKIqhNxRdE_tfk8RrBqi63V8UwSrXfBqH7yagldfwSs5idhelCbYryH-Wf-j-gQTzIkn</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Yang, Weimin</creator><creator>Wang, Meixia</creator><creator>Zhou, Zongqing</creator><creator>Li, Liping</creator><creator>Yang, Geng</creator><creator>Ding, Ruosong</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4418-1264</orcidid></search><sort><creationdate>20201201</creationdate><title>Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model</title><author>Yang, Weimin ; Wang, Meixia ; Zhou, Zongqing ; Li, Liping ; Yang, Geng ; Ding, Ruosong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-df326b21bc8a98cf4fe8e194b8d5ebe977cfce672fc8866f146287e83450d5013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Bonding</topic><topic>Cohesion</topic><topic>Compressive strength</topic><topic>Contact stresses</topic><topic>Correlation</topic><topic>Criteria</topic><topic>Empirical analysis</topic><topic>Energy</topic><topic>Engineering</topic><topic>Environmental Science and Engineering</topic><topic>Foundations</topic><topic>Friction</topic><topic>Geoengineering</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Interaction parameters</topic><topic>Internal friction</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Limestone</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mindlin plates</topic><topic>Modulus of elasticity</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Peak load</topic><topic>Shear stiffness</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Stress-strain curves</topic><topic>Stress-strain relations</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weimin</creatorcontrib><creatorcontrib>Wang, Meixia</creatorcontrib><creatorcontrib>Zhou, Zongqing</creatorcontrib><creatorcontrib>Li, Liping</creatorcontrib><creatorcontrib>Yang, Geng</creatorcontrib><creatorcontrib>Ding, Ruosong</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geomechanics and geophysics for geo-energy and geo-resources.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weimin</au><au>Wang, Meixia</au><au>Zhou, Zongqing</au><au>Li, Liping</au><au>Yang, Geng</au><au>Ding, Ruosong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model</atitle><jtitle>Geomechanics and geophysics for geo-energy and geo-resources.</jtitle><stitle>Geomech. Geophys. Geo-energ. Geo-resour</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>6</volume><issue>4</issue><artnum>68</artnum><issn>2363-8419</issn><eissn>2363-8427</eissn><abstract>The mesoscopic parameters of numerical simulation cannot be directly obtained from laboratory test, and it is necessary to calibrate the parameters by comparing the numerical simulation results with the experimental results. To quickly and reasonably determine the mesoscopic parameters of limestone, a unique variable principle is used to comprehensively analyze the quantitative relationship between mesoscopic and macroscopic parameters. The results show that: The elastic modulus is positively correlated with the shear and normal stiffness per unit area. The compressive strength increases linearly with the increase of normal and shear stiffness per unit area, and it has a power function growth relation to critical normal stress and shear stress. The cohesion is mainly affected by critical normal and shear stress. With an increase of the critical normal and shear stress, the cohesion decreases. The normal stiffness per unit area, shear stiffness per unit area, critical shear stress, and critical normal stress have little influence on the internal friction angle. But there is a linear relationship between the internal friction angle and shear stiffness per unit area, and the internal friction angle is linearly related to the critical shear stress. Considering the interaction of multiple parameters, the correlation criterion and empirical formula between the mesoscopic parameters and rock mechanical parameters in the Hertz–Mindlin with Bonding contact model are proposed. The peak load, elastic modulus, and stress–strain curve variation law obtained by laboratory test and numerical simulation are close to each other, which indicates the correlation criterion can accurately simulate the mechanical properties of limestone.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40948-020-00184-8</doi><orcidid>https://orcid.org/0000-0003-4418-1264</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-8419 |
ispartof | Geomechanics and geophysics for geo-energy and geo-resources., 2020-12, Vol.6 (4), Article 68 |
issn | 2363-8419 2363-8427 |
language | eng |
recordid | cdi_proquest_journals_2473795781 |
source | SpringerNature Journals |
subjects | Adhesion Bonding Cohesion Compressive strength Contact stresses Correlation Criteria Empirical analysis Energy Engineering Environmental Science and Engineering Foundations Friction Geoengineering Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydraulics Interaction parameters Internal friction Laboratories Laboratory tests Limestone Mathematical models Mechanical properties Mindlin plates Modulus of elasticity Original Article Parameters Peak load Shear stiffness Shear stress Simulation Stress-strain curves Stress-strain relations |
title | Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20relationship%20between%20macroscopic%20and%20mesoscopic%20mechanical%20parameters%20of%20limestone%20based%20on%20Hertz%20Mindlin%20with%20bonding%20model&rft.jtitle=Geomechanics%20and%20geophysics%20for%20geo-energy%20and%20geo-resources.&rft.au=Yang,%20Weimin&rft.date=2020-12-01&rft.volume=6&rft.issue=4&rft.artnum=68&rft.issn=2363-8419&rft.eissn=2363-8427&rft_id=info:doi/10.1007/s40948-020-00184-8&rft_dat=%3Cproquest_cross%3E2473795781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473795781&rft_id=info:pmid/&rfr_iscdi=true |