On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation
We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, w...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2020-12, Vol.30 (6), p.2989-3026 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3026 |
---|---|
container_issue | 6 |
container_start_page | 2989 |
container_title | Journal of nonlinear science |
container_volume | 30 |
creator | Hasík, Karel Kopfová, Jana Nábělková, Petra Trofimchuk, Sergei |
description | We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts. |
doi_str_mv | 10.1007/s00332-020-09642-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473790302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473790302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNY5rJUmptxUIXvpYhk0nqlOmkTaaF_nvTjuDO1YWP75wLB6FbAvcEQDxEAMZoBhQykCNOM3mGBoQnRPhInKMBSFZkhRT8El3FuAIgImd0gD4XLe6-LZ5av7ZdqA1-qvc2xLo7YO_wl95bF3zbRex8OJlvRjc64FffrP3SB7_HE-Mbv6wTx5PtTne1b6_RhdNNtDe_d4g-nifv41k2X0xfxo_zzDAiu8zkpS655aUtnZVAuBSFZqasZAEuL44IuDZgAaRwUOXmSKuCljm1o4qwIbrrezfBb3c2dmrld6FNLxXlggkJDGiyaG-Z4GMM1qlNqNc6HBQBddxP9fuptJ867adkCrE-FJPcLm34q_4n9QOXNHOz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473790302</pqid></control><display><type>article</type><title>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hasík, Karel ; Kopfová, Jana ; Nábělková, Petra ; Trofimchuk, Sergei</creator><creatorcontrib>Hasík, Karel ; Kopfová, Jana ; Nábělková, Petra ; Trofimchuk, Sergei</creatorcontrib><description>We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-020-09642-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Questions ; Theoretical ; Wave fronts</subject><ispartof>Journal of nonlinear science, 2020-12, Vol.30 (6), p.2989-3026</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</citedby><cites>FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</cites><orcidid>0000-0003-1605-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-020-09642-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-020-09642-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hasík, Karel</creatorcontrib><creatorcontrib>Kopfová, Jana</creatorcontrib><creatorcontrib>Nábělková, Petra</creatorcontrib><creatorcontrib>Trofimchuk, Sergei</creatorcontrib><title>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Theoretical</subject><subject>Wave fronts</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNY5rJUmptxUIXvpYhk0nqlOmkTaaF_nvTjuDO1YWP75wLB6FbAvcEQDxEAMZoBhQykCNOM3mGBoQnRPhInKMBSFZkhRT8El3FuAIgImd0gD4XLe6-LZ5av7ZdqA1-qvc2xLo7YO_wl95bF3zbRex8OJlvRjc64FffrP3SB7_HE-Mbv6wTx5PtTne1b6_RhdNNtDe_d4g-nifv41k2X0xfxo_zzDAiu8zkpS655aUtnZVAuBSFZqasZAEuL44IuDZgAaRwUOXmSKuCljm1o4qwIbrrezfBb3c2dmrld6FNLxXlggkJDGiyaG-Z4GMM1qlNqNc6HBQBddxP9fuptJ867adkCrE-FJPcLm34q_4n9QOXNHOz</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hasík, Karel</creator><creator>Kopfová, Jana</creator><creator>Nábělková, Petra</creator><creator>Trofimchuk, Sergei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1605-222X</orcidid></search><sort><creationdate>20201201</creationdate><title>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</title><author>Hasík, Karel ; Kopfová, Jana ; Nábělková, Petra ; Trofimchuk, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Theoretical</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasík, Karel</creatorcontrib><creatorcontrib>Kopfová, Jana</creatorcontrib><creatorcontrib>Nábělková, Petra</creatorcontrib><creatorcontrib>Trofimchuk, Sergei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasík, Karel</au><au>Kopfová, Jana</au><au>Nábělková, Petra</au><au>Trofimchuk, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2989</spage><epage>3026</epage><pages>2989-3026</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-020-09642-9</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-1605-222X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8974 |
ispartof | Journal of nonlinear science, 2020-12, Vol.30 (6), p.2989-3026 |
issn | 0938-8974 1432-1467 |
language | eng |
recordid | cdi_proquest_journals_2473790302 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Questions Theoretical Wave fronts |
title | On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Geometric%20Diversity%20of%20Wavefronts%20for%20the%20Scalar%20Kolmogorov%20Ecological%20Equation&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Has%C3%ADk,%20Karel&rft.date=2020-12-01&rft.volume=30&rft.issue=6&rft.spage=2989&rft.epage=3026&rft.pages=2989-3026&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-020-09642-9&rft_dat=%3Cproquest_cross%3E2473790302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473790302&rft_id=info:pmid/&rfr_iscdi=true |