On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation

We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2020-12, Vol.30 (6), p.2989-3026
Hauptverfasser: Hasík, Karel, Kopfová, Jana, Nábělková, Petra, Trofimchuk, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3026
container_issue 6
container_start_page 2989
container_title Journal of nonlinear science
container_volume 30
creator Hasík, Karel
Kopfová, Jana
Nábělková, Petra
Trofimchuk, Sergei
description We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.
doi_str_mv 10.1007/s00332-020-09642-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473790302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473790302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNY5rJUmptxUIXvpYhk0nqlOmkTaaF_nvTjuDO1YWP75wLB6FbAvcEQDxEAMZoBhQykCNOM3mGBoQnRPhInKMBSFZkhRT8El3FuAIgImd0gD4XLe6-LZ5av7ZdqA1-qvc2xLo7YO_wl95bF3zbRex8OJlvRjc64FffrP3SB7_HE-Mbv6wTx5PtTne1b6_RhdNNtDe_d4g-nifv41k2X0xfxo_zzDAiu8zkpS655aUtnZVAuBSFZqasZAEuL44IuDZgAaRwUOXmSKuCljm1o4qwIbrrezfBb3c2dmrld6FNLxXlggkJDGiyaG-Z4GMM1qlNqNc6HBQBddxP9fuptJ867adkCrE-FJPcLm34q_4n9QOXNHOz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473790302</pqid></control><display><type>article</type><title>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hasík, Karel ; Kopfová, Jana ; Nábělková, Petra ; Trofimchuk, Sergei</creator><creatorcontrib>Hasík, Karel ; Kopfová, Jana ; Nábělková, Petra ; Trofimchuk, Sergei</creatorcontrib><description>We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-020-09642-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Questions ; Theoretical ; Wave fronts</subject><ispartof>Journal of nonlinear science, 2020-12, Vol.30 (6), p.2989-3026</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</citedby><cites>FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</cites><orcidid>0000-0003-1605-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-020-09642-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-020-09642-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hasík, Karel</creatorcontrib><creatorcontrib>Kopfová, Jana</creatorcontrib><creatorcontrib>Nábělková, Petra</creatorcontrib><creatorcontrib>Trofimchuk, Sergei</creatorcontrib><title>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Theoretical</subject><subject>Wave fronts</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNY5rJUmptxUIXvpYhk0nqlOmkTaaF_nvTjuDO1YWP75wLB6FbAvcEQDxEAMZoBhQykCNOM3mGBoQnRPhInKMBSFZkhRT8El3FuAIgImd0gD4XLe6-LZ5av7ZdqA1-qvc2xLo7YO_wl95bF3zbRex8OJlvRjc64FffrP3SB7_HE-Mbv6wTx5PtTne1b6_RhdNNtDe_d4g-nifv41k2X0xfxo_zzDAiu8zkpS655aUtnZVAuBSFZqasZAEuL44IuDZgAaRwUOXmSKuCljm1o4qwIbrrezfBb3c2dmrld6FNLxXlggkJDGiyaG-Z4GMM1qlNqNc6HBQBddxP9fuptJ867adkCrE-FJPcLm34q_4n9QOXNHOz</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hasík, Karel</creator><creator>Kopfová, Jana</creator><creator>Nábělková, Petra</creator><creator>Trofimchuk, Sergei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1605-222X</orcidid></search><sort><creationdate>20201201</creationdate><title>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</title><author>Hasík, Karel ; Kopfová, Jana ; Nábělková, Petra ; Trofimchuk, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5bab4e4bebfe9014978a3cbd980f58e90104ac0e0097f0d5cf58ed82b52e6d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Theoretical</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasík, Karel</creatorcontrib><creatorcontrib>Kopfová, Jana</creatorcontrib><creatorcontrib>Nábělková, Petra</creatorcontrib><creatorcontrib>Trofimchuk, Sergei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasík, Karel</au><au>Kopfová, Jana</au><au>Nábělková, Petra</au><au>Trofimchuk, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2989</spage><epage>3026</epage><pages>2989-3026</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>We answer three fundamental questions concerning monostable traveling fronts for the scalar Kolmogorov ecological equation with diffusion and spatiotemporal interaction: These are the questions about their existence, uniqueness and geometric shape. In the particular case of the food-limited model, we give a rigorous proof of the existence of a peculiar, yet substantive and nonlinearly determined class of non-monotone and non-oscillating wavefronts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-020-09642-9</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-1605-222X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-8974
ispartof Journal of nonlinear science, 2020-12, Vol.30 (6), p.2989-3026
issn 0938-8974
1432-1467
language eng
recordid cdi_proquest_journals_2473790302
source SpringerLink Journals - AutoHoldings
subjects Analysis
Classical Mechanics
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Questions
Theoretical
Wave fronts
title On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Geometric%20Diversity%20of%20Wavefronts%20for%20the%20Scalar%20Kolmogorov%20Ecological%20Equation&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Has%C3%ADk,%20Karel&rft.date=2020-12-01&rft.volume=30&rft.issue=6&rft.spage=2989&rft.epage=3026&rft.pages=2989-3026&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-020-09642-9&rft_dat=%3Cproquest_cross%3E2473790302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473790302&rft_id=info:pmid/&rfr_iscdi=true